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Abstract

Two-component spinors are the basic ingredients for describing fermions in quantum field
theory in 3 + 1 spacetime dimensions. We develop and review the techniques of the two-
component spinor formalism and provide a complete set of Feynman rules for fermions using
two-component spinor notation. These rules are suitable for practical calculations of cross-
sections, decay rates, and radiative corrections in the Standard Model and its extensions,
including supersymmetry, and many explicit examples are provided. The unified treatment
presented in this review applies to massless Weyl fermions and massive Dirac and Majorana
fermions. We exhibit the relation between the two-component spinor formalism and the more
traditional four-component spinor formalism, and indicate their connections to the spinor
helicity method and techniques for the computation of helicity amplitudes.
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1 Introduction

A crucial feature of the Standard Model of particle physics is the chiral nature of fermion quan-

tum numbers and interactions. According to the modern understanding of the electroweak

interactions, the fundamental degrees of freedom for quarks and leptons are two-component

Weyl-van der Waerden fermions [1], i.e. two-component Lorentz spinors that transform as irre-

ducible representations under the gauge group SU(2)L×U(1)Y . Furthermore, within the context

of supersymmetric field theories, two-component spinors enter naturally, due to the spinorial na-

ture of the symmetry generators themselves, and the holomorphic structure of the superpoten-

tial. Despite this, most pedagogical treatments and practical calculations in high-energy physics

continue to use the four-component Dirac spinor notation, which combines distinct irreducible

representations of the Lorentz symmetry algebra. Parity-conserving theories such as QED and

QCD are well-suited to the four-component fermion methods. There is also a certain perceived

advantage to familiarity. However, as we progress to phenomena at and above the scale of elec-

troweak symmetry breaking, it seems increasingly natural to employ two-component fermion

notation, in harmony with the irreducible transformation properties dictated by the physics.

One occasionally encounters the misconception that two-component fermion notations are

somehow inherently ill-suited or unwieldy for practical use. Perhaps this is due in part to a

lack of examples of calculations using two-component language in the pedagogical literature. In

this review, we seek to dispel this idea by presenting Feynman rules for fermions using two-

component spinor notation, intended for practical calculations of cross-sections, decays, and

radiative corrections. This formalism employs a unified framework that applies equally well to

Dirac fermions [2] such as the Standard Model quarks and charged leptons, and to Majorana

fermions [3] such as the light neutrinos of the seesaw extension of the Standard Model [4, 5] or

the neutralinos of the minimal supersymmetric extension of the Standard Model (MSSM) [6–10].

Spinors were introduced by E. Cartan in 1913 as projective representations of the rotation

group [11, 12], and entered into physics via the Dirac equation in 1928 [2]. In the same year,

H. Weyl discussed the representations of the Lorentz group [13], including the two-component

spinor representations, in terms of stereographic projective coordinates [14]. The extension

of the tensor calculus (or tensor analysis) to spinor calculus (or spinor analysis) was given

by B.L. van der Waerden [1], upon the instigation of P. Ehrenfest. It is in this paper that

van der Waerden (not Weyl as often claimed in the literature) first introduced the notation of

dotted and undotted indices for the irreducible (12 ,0) and (0,12 ) representations of the Lorentz

group. Both Weyl [15] and van der Waerden independently considered the decomposition of

the Dirac equation into two coupled differential equations for two-component spinors. In the

1930s, more pedagogical presentations of two-component spinors were given in refs. [16–18]. In

particular, ref. [16] was the first paper in English to employ the dotted and undotted index
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notation. Ref. [17] also presents the first two-component spinor analysis for general relativity.

In the early 1950s, comprehensive reviews of two-component spinor techniques were published

in English by Bade and Jehle [19] and in German by Cap [20]. Shortly thereafter, Bergmann

reintroduced two-component spinors into the formalism of general relativity [21], which was

followed by significant developments by Penrose [22].1 Two-component spinor techniques in

curved space are reviewed in refs. [23, 24], with an extensive bibliography given in ref. [25].

A recent mathematical treatment of two-component spinors and their geometry can be found

in ref. [26]. Two-component spinors also play a central role in the covariant formulation of

relativistic wave equations [27].

The formalism of two-component spinors has also been discussed in many textbooks on

relativistic quantum mechanics, quantum field theory, elementary particle physics, group the-

oretical methods in physics, general relativity, and supersymmetry. For a guide to the non-

supersymmetric literature, see for example, refs. [14, 28–67]. Among the early books, we would

like to draw attention to ref. [28], which has an extensive discussion of two-component spinor

methods. Scheck [41] includes a short discussion of the field theory of two-component spinors,

including the propagator. A more extensive field theoretic treatment, including Feynman rules

and applications, is given by Ticciati [49]. A modern textbook on quantum field theory by Sred-

nicki [65] includes a comprehensive treatment of two-component fermions and their quantization.

Most textbooks and introductory reviews of supersymmetry [6–9,68–89] include a discussion of

two-component spinors on some level, with a treatment of dotted and undotted indices and a

collection of identities involving two-component spinors and the sigma matrices. Particularly

extensive and useful sets of identities can be found in refs. [68, 72, 74, 77, 83, 85]. Finally, some

mathematically sophisticated textbook treatments of spinors can be found in refs. [90–92].

The standard technique for computing scattering cross-sections with initial and final state

fermions involves squaring the quantum S-matrix amplitude, summing over the spin states and

then computing the traces of products of gamma matrices (in the four-component spinor for-

malism), or products of sigma matrices (in the two-component spinor formalism). We employ

this latter technique throughout this paper (with a translation to the four-component formalism

provided in an appendix). However, the computational effort rises rapidly as the number of

interfering diagrams increases. The standard techniques typically become impractical with four

or more particles in the final state. One approach to make such extensive calculations man-

ageable is the helicity amplitude technique. Here the scattering process is decomposed into the

scattering of helicity eigenstates. Then the individual amplitudes are computed analytically in

terms of Lorentz scalar invariants, i.e. a complex number that can be readily computed. It is

then a simple numerical task to sum all the contributing amplitudes and compute the square of

1For typographical reasons, Penrose replaced the dotted indices with primed indices, a notation still employed
by most general relativists today.
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the complex magnitude of the resulting sum. Such methods were first explored in refs. [93–96],

using four-component spinors (see also refs. [97–101]). Spinor techniques in the helicity for-

malism were also developed in ref. [102]. In fact, the natural spinor formalism for the helicity

amplitude techniques makes use of the two-component Weyl-van der Waerden spinors, which

we discuss in detail in this review. They were implemented in the helicity amplitude technique

in refs. [103–109]. Recently, the two-component formalism has been implemented in a computer

program for the numerical computation of amplitudes and cross-sections for event generators

multi-particle processes [110].

This review is outlined as follows. In Section 2, we present our conventions and notation

(with some additional discussion of our conventions in Appendix A). We also establish numerous

identities involving sigma matrices, epsilon symbols and two-component spinors. In Section 3,

we derive the basic properties of the quantized two-component fermion fields. For a generic

collection of N two-component fermion fields with identical conserved quantum numbers, the

corresponding mass matrix is anN×N complex symmetric matrix. To identify the corresponding

mass eigenstates, one must perform a fermion-mass diagonalization that differs from the usual

unitary similarity transformation of an hermitian matrix that is employed for a collection of

scalar fields. In Section 4, we derive the Feynman rules for two-component spinors and describe

how to write down amplitudes in our formalism. We demonstrate how to employ the two-

component formalism for both tree-level and loop-level processes. In Section 5, we establish

a naming convention for fermion and antifermion particle states and the corresponding fields.

This is important as it provides an unambiguous procedure for obtaining the amplitudes for a

given physical process, and for comparing these computations in the two-component and four-

component spinor formalisms. In Section 6 we provide an extensive number of examples of

computations using the two-component spinor formalism. This is the central part of our review.

We have relegated many details to a set of twelve appendices. In Appendix A, we summa-

rize our metric and sigma matrix conventions and indicate how to translate between conventions

with opposite metric signature. With our definition of the sigma matrices, one can switch easily

between the two conventions by computing one overall sign factor. In Appendix B, we provide

a comprehensive list of sigma matrix identities, and indicate which of these identities can be

generalized to d 6= 4 dimensions required for loop computations that employ dimensional regu-

larization. Explicit forms for the two-component spinor wave functions are given in Appendix C

(where we exhibit two of the most common phase conventions employed in the literature). The

mathematics of fermion mass diagonalization is discussed in Appendix D. In contrast to the uni-

tary similarity transformation of the scalar squared-mass matrix, fermion mass diagonalization

involves the Takagi diagonalization [111] of a complex symmetric matrix (for neutral fermions)

or the singular value decomposition of a complex matrix (for charged fermions). In Appendix E,

we review some of the basic facts of Lie groups and Lie algebras needed in the treatment of gauge
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theories. The two-component fermion propagators (derived in Section 4 using canonical field

theory techniques) can also be obtained by path integral methods, as exhibited in Appendix F.

As most textbooks on quantum field theory and elementary particle physics employ the

four-component spinor formalism for fermions, we provide in Appendix G a dictionary that

allows one to translate between the two-component and four-component spinor techniques. We

use the two-component spinor methods developed in this review to establish a generalization

of the standard four-component spinor Feynman rules that incorporate Majorana fermions in a

natural way. In Appendix H, we develop a method for computing helicity amplitudes in terms

of Lorentz-invariant scalar quantities. This method, which makes use of the Bouchiat-Michel

formulae [112] (originally established in the four-component spinor formalism) is developed in

the language of two-component spinors. However, these methods are somewhat limited in scope

and must be generalized in the case of multi-particle final states. This was accomplished by

Hagiwara and Zeppenfeld (HZ) based on a two-component spinor treatment [105]. In Appendix I,

we provide a translation between the HZ formalism and the two-component spinor formalism of

this review. We also demonstrate that the spinor helicity method that is now commonly used

in obtaining compact expressions for helicity amplitudes of multi-particle processed has a very

simple development within the two-component spinor formalism. Finally, the two-component

spinor Feynman rules for the Standard Model, the seesaw-extended Standard Model (which

incorporates massive neutrinos), the minimal supersymmetric extension of the Standard Model

(MSSM), and the R-parity-violating extension of the MSSM are given in Appendices J, K and L.

2 Essential conventions, notations and two-component spinor
identities

We begin with a discussion of necessary conventions. The metric tensor is taken to be:2

gµν = gµν = diag(+1,−1,−1,−1) , (2.1)

where µ, ν = 0, 1, 2, 3 are spacetime vector indices. Contravariant four-vectors (e.g. positions

and momenta) are defined with raised indices, and covariant four-vectors (e.g. derivatives) with

lowered indices:

xµ = (t ; ~x) , (2.2)

pµ = (E ; ~p) , (2.3)

∂µ ≡
∂

∂xµ
= (∂/∂t ; ~∇) , (2.4)

2The published version of this paper employs the (+,−,−,−) Minkowski space metric. An otherwise
identical version, using the (−,+,+,+) metric favored by one of the authors (SPM), may be found at
http://zippy.physics.niu.edu/spinors.html. It can also be constructed by changing a single macro at the
beginning of the LATEX source file [113], in an obvious way. You can tell which version you are presently reading
from eq. (2.1). See Appendix A for further details and rules for translating between metric conventions.

8



in units with c = 1. The totally antisymmetric pseudo-tensor ǫµνρσ is defined such that

ǫ0123 = −ǫ0123 = +1 . (2.5)

More details on our conventions can be found in Appendix A.

The irreducible building blocks for spin-1/2 fermions are fields that transform either under

the left-handed (12 , 0) or the right-handed (0, 12 ) representation of the Lorentz group. Hermitian

conjugation interchanges these two representations. A Majorana fermion field can be constructed

from either representation; this is the spin-1/2 analogue of a real scalar field. A Dirac fermion

field combines two equal mass two-component fields into a reducible representation of the form

(12 , 0) ⊕ (0, 12); this is the spin-1/2 analogue of a complex scalar field. It is also possible to

use four-component notation to describe a Majorana fermion by imposing a reality condition

on the spinor in order to reduce the number of degrees of freedom in half. Details of this

construction are given in Appendix G.1. However, in this review, we shall focus primarily on

two-component spinor notation for all fermions. In the following, (12 , 0) spinors carry undotted

indices α, β, . . . = 1, 2, and (0, 12) spinors carry dotted indices α̇, β̇, . . . = 1, 2.

We first provide a brief introduction to the Lorentz group and its two-dimensional spinor

representations. Under a Lorentz transformation, a contravariant four-vector xµ transforms as

xµ → x′µ = Λµνx
ν , (2.6)

where Λ ∈SO(3,1) satisfies ΛµνgµρΛ
ρ
λ = gνλ. It then follows that the transformation of the

corresponding covariant four-vector xµ ≡ gµνxν satisfies:

xν = x′µΛ
µ
ν . (2.7)

The most general proper orthochronous Lorentz transformation (which is continuously connected

to the identity), corresponding to a rotation by an angle θ about an axis n̂ [~θ ≡ θn̂] and a boost

vector ~ζ ≡ v̂ tanh−1 β [where v̂ ≡ ~v/|~v| and β ≡ |~v|], is a 4× 4 matrix given by:

Λ = exp
(
− i

2θ
ρσSρσ

)
= exp

(
−i~θ · ~S − i~ζ · ~K

)
, (2.8)

where θi ≡ 1
2ǫ
ijkθjk, ζ

i ≡ θi0 = −θ0i, Si ≡ 1
2ǫ
ijkSjk, Ki ≡ S0i = −Si0 and

(Sρσ)µν = i(gρ
µ gσν − gσµ gρν) . (2.9)

Here, the indices i, j, k = 1, 2, 3 and ǫ123 = +1.

It follows from eqs. (2.8) and (2.9) that an infinitesimal orthochronous Lorentz transforma-

tion is given by Λµν ≃ δµν + θµν (after noting that θµν = −θνµ). Moreover, the infinitesimal

boost parameter is ~ζ ≡ v̂ tanh−1 β ≃ βv̂ ≡ ~β, since β ≪ 1 for an infinitesimal boost. Hence,
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the actions of the infinitesimal boosts and rotations on the spacetime coordinates are

Rotations:

{
~x→ ~x′ ≃ ~x+ (~θ × ~x) ,

t→ t′ ≃ t ,
(2.10)

Boosts:

{
~x→ ~x′ ≃ ~x+ ~β t ,

t→ t′ ≃ t+ ~β·~x ,
(2.11)

with exactly analogous transformations for any contravariant four-vector.

With respect to the Lorentz transformation Λ, a general n-component field Φ transforms

according to a representation R of the Lorentz group as Φ(xµ) → Φ′(x′ µ) = MR(Λ)Φ(x
µ),

where MR(Λ) is the corresponding (finite) dR-dimensional matrix representation. Equivalently,

the functional form of the transformed field Φ obeys

Φ′(xµ) =MR(Λ)Φ([Λ
−1]µνx

ν) , (2.12)

after using eq. (2.6). For proper orthochronous Lorentz transformations,

MR = exp

(
− i
2
θµνJ

µν

)
≃ 1dR×dR − i~θ· ~J − i~ζ · ~K , (2.13)

where 1dR×dR is the dR × dR identity matrix and θµν parameterizes the Lorentz transformation

Λ [eq. (2.8)]. The six independent components of the matrix-valued antisymmetric tensor Jµν

are the dR-dimensional generators of the Lorentz group and satisfy the commutation relations:

[Jµν , Jλκ] = i(gµκ Jνλ + gνλ Jµκ − gµλ Jνκ − gνκ Jµλ) . (2.14)

We identify ~J and ~K as the generators of rotations parameterized by ~θ and boosts parameterized

by ~ζ, respectively, where

J i ≡ 1
2ǫ
ijkJjk , Ki ≡ J0i . (2.15)

Here we focus on the simplest non-trivial irreducible representations of the Lorentz algebra.

These are the two-dimensional (inequivalent) representations: (12 , 0) and (0, 12). In the (12 , 0)

representation, ~J = ~σ/2 and ~K = −i~σ/2 in eq. (2.13), which yields

M
(
1
2 ,0)
≡M ≃ 12×2 − i~θ ·~σ/2− ~ζ ·~σ/2 , (2.16)

where ~σ ≡ (σ1 , σ2 , σ3) are the Pauli matrices [cf. eq. (2.27)]. By definition M carries undotted

spinor indices, as indicated by Mα
β . A two-component (12 , 0) spinor is denoted by ψα and

transforms as ψα → Mα
βψβ , omitting the coordinate arguments of the fields, which are as in

eq. (2.12). In our conventions for the location of the spinor indices, we sum implicitly over a

repeated index pair in which one index is lowered and one index is raised.

In the (0, 12) representation,
~J = −~σ∗/2 and ~K = −i~σ∗/2 in eq. (2.13), so that its repre-

sentation matrix is M∗, the complex conjugate of eq. (2.16). By definition, the indices carried
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by M∗ are dotted, as indicated by (M∗)α̇
β̇. A two-component (0, 12 ) spinor is denoted by ψ†

α̇

and transforms as ψ†
α̇ → (M∗)α̇

β̇ψ†
β̇
, again suppressing the coordinate arguments of the fields,

which are as in eq. (2.12). We distinguish between the undotted and dotted spinor index types

because they cannot be directly contracted with each other to form a Lorentz invariant quantity.

It follows that the (12 , 0) and (0, 12) representations are related by hermitian conjugation.

That is, if ψα is a (12 , 0) fermion, then (ψα)
† transforms as a (0, 12) fermion. This means that

we can, and will, describe all fermion degrees of freedom using only fields defined as left-handed

(12 , 0) fermions ψα, and their conjugates. In combining spinors to make Lorentz tensors [as in

eq. (2.38)], it is useful to regard ψ†
α̇ as a row vector, and ψα as a column vector, with:3

ψ†
α̇ ≡ (ψα)

†. (2.17)

The Lorentz transformation property of ψ†
α̇ then follows from (ψα)

† → (ψβ)
†(M †)β̇ α̇ [with coor-

dinate arguments of the fields again suppressed], where (M †)β̇ α̇ = (M∗)α̇
β̇ reflects the definition

of the hermitian adjoint matrix as the complex conjugate transpose of the matrix. Again the

coordinate arguments of the fields have been suppressed, and are as in eq. (2.12).

In this review, we shall employ the dotted-index notation in association with the dagger

to denote hermitian conjugation, as specified in eq. (2.17). This is the notation for hermitian

conjugation of spinors found in most field theory textbooks (e.g., see refs. [65,88,114]). However,

it should be noted that many references in the supersymmetry literature (e.g., see refs. [68–87])

employ the bar notation made popular by Wess and Bagger [68] where ψα̇ ≡ ψ†
α̇ ≡ (ψα)

†.

Spinors labeled with one undotted or one dotted index are sometimes called spinors of

rank one [or more precisely, spinors of rank (1, 0) or (0, 1), respectively]. One can also define

spinors of higher rank, which possess more than one spinor index, with Lorentz transformation

properties that depend on the number of undotted and dotted spinor indices [16, 19, 20, 23, 27–

39, 50, 52, 60, 78, 115]. In particular, for a spinor of rank (m,n) denoted by Sα1α2···αmβ̇1β̇2···β̇n ,

each lowered undotted α-index transforms separately according to Mα′
i

αi in eq. (2.16) and each

lowered dotted β̇-index transforms according to (M∗)β̇′
i

β̇i .

There are two additional spin-1/2 irreducible representations of the Lorentz group, (M−1)T

and (M−1)†, but these are equivalent representations to the (12 , 0) and the (0, 12) representations,

respectively. The spinors that transform under these representations have raised spinor indices,

ψα and ψ†α̇, with transformation laws ψα → [(M−1)T]αβψ
β and ψ†α̇ → [(M−1)†]α̇β̇ψ

†β̇ , respec-

tively (with coordinate arguments of the fields again suppressed). It is convenient to rewrite the

transformation law for the undotted spinor as ψα → ψβ(M−1)β
α. In combining spinors to make

Lorentz tensors [as in eq. (2.39)], it is useful to regard ψα as a row vector, and ψ† α̇ as a column

3In the early literature that employed the van der Waerden spinor index notation (surveyed in Section 1), no
dagger was used in conjunction with the dotted index. The advantage to attaching the dagger to the dotted spinor
field is that it permits the development of a spinor-index-free notation for Lorentz-covariant spinor products [see
eqs. (2.35)–(2.39) and the accompanying text].
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vector, with:

ψ† α̇ ≡ (ψα)† . (2.18)

The Lorentz transformation property of ψ† α̇ then follows from (ψα)† → [(M−1)†]α̇β̇(ψ
β)†.

The spinor indices are raised and lowered with the two-index antisymmetric epsilon symbol

with non-zero components,4

ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = 1 , (2.19)

and the same set of sign conventions for the corresponding dotted spinor indices. In particular,

we formally define ǫα̇β̇ ≡ (ǫαβ)∗ and ǫα̇β̇ ≡ (ǫαβ)
∗. Viewed as a 2× 2 matrix, the epsilon symbol

with lowered undotted [dotted] indices is the inverse of the epsilon symbol with raised undotted

[dotted] indices. Thus, consistent with eqs. (2.17) and (2.18), one can write:5,6

ψα = ǫαβψ
β , ψα = ǫαβψβ , ψ†

α̇ = ǫα̇β̇ψ
†β̇ , ψ†α̇ = ǫα̇β̇ψ†

β̇
, (2.20)

which respects Lorentz covariance due to the properties of M given in eqs. (2.101) and (2.102).

The epsilon symbols ǫαβ (ǫαβ) and ǫ
α̇β̇ (ǫα̇β̇), first introduced in this context in ref. [1], are also

called the spinor metric tensors, as they raise (lower) the undotted and dotted spinor indices,

respectively. Note that in raising or lowering an index of a spinor quantity, adjacent spinor

indices are summed over when multiplied on the left by the appropriate epsilon symbol.

The epsilon symbols can also be used to raise or lower undotted or dotted indices of spinors

of higher rank. For example, for an object with two undotted indices it is natural to define

Aγδ = ǫγαǫδβAαβ , Aγδ = ǫγαǫδβA
αβ . (2.21)

In the special case that Aαβ = ψαχβ is a product of rank-one spinors, eq. (2.21) is not just

natural but necessary, as it follows directly from eq. (2.20). However, in other cases there can be

4For related earlier work on the epsilon symbol and its properties, see refs. [16,17,19,116]. Various subsets of
the subsequent identities in this section involving commuting and anticommuting two-component spinors, as well
as the ǫ symbol and the sigma matrices appear in many books and reviews (e.g., see refs. [18,68–83,85–88]) and
in papers (e.g., see refs. [103–109]).

5In the general relativity literature (see e.g., refs. [22,23,37,42,43,46,52,60,62,64]), the more common convention
for the epsilon symbol (also adopted in refs. [19, 28, 30, 36, 45, 47, 92, 109]) is ǫαβ = ǫαβ with ǫ12 = −ǫ21 = 1, and
similarly for the epsilon symbol with dotted spinor indices. In this convention, one writes ψα = ǫαβψβ as above,
but in contrast to eq. (2.20), ψα = ψβǫβα, and similarly for the corresponding equations with dotted spinor
indices. That is, in raising [lowering] an index of a spinor quantity, adjacent spinor indices are summed over
when multiplied on the left [right] by the appropriate epsilon symbol. The various identities involving the epsilon
symbols given in this review must then be modified by a minus sign for every epsilon symbol with lowered spinor
indices. There are some benefits for this alternative convention; e.g., the minus signs appearing in eq. (2.22)
are absent. However, one must keep track of other minus signs that arise because ǫαβ is the negative of the
inverse of ǫαβ. In this review, we have adopted the convention of eq. (2.19), which is consistent with most of the
supersymmetry literature.

6In refs. [50, 69], one finds yet another convention in which the spinor indices are raised and lowered by a

two-index antisymmetric quantity, Cαβ = −Cαβ = Cα̇β̇ = −Cα̇β̇ =
(
0 −i
i 0

)
, which play the role of the epsilon

symbols. As in footnote 5, Cαβ is the negative inverse of Cαβ in which case ψα = Cαβψβ whereas ψα = ψβCβα,
and similarly for the corresponding equations with dotted spinor indices. However, in this convention where C is
pure imaginary, if ψ† α̇ ≡ (ψα)† as in eq. (2.18), then ψ†

α̇ = −(ψα)
† in contrast to eq. (2.17). We choose not to

pursue the alternative epsilon symbol conventions of footnotes 5 or 6 in this review.
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a different sign associated (by convention) with raising and lowering spinor indices, because of

the antisymmetry of the epsilon symbols (in contrast to the symmetry of the spacetime metric

used to raise and lower spacetime indices). This sign convention can be defined independently

for distinct higher-rank spinors (even in the case where the higher-rank spinors possess the same

index structure). Indeed, as a consequence of our epsilon symbol conventions of eq. (2.19), the

epsilon symbols themselves satisfy:

ǫγδ = −ǫγαǫδβǫαβ , ǫγδ = −ǫγαǫδβǫαβ , (2.22)

in contrast to eq. (2.21). The above results (and similar ones with dotted indices) show that

some care is required [33], since the extra overall minus signs of eq. (2.22) in comparison to

eq. (2.21) might otherwise have been unexpected [e.g., see eqs. (2.40) and (2.41) below].7 This

reflects an awkwardness imposed by the epsilon symbol conventions of eq. (2.19), rather than

an inconsistency. Practitioners of spinor algebra in the conventions used in this review should

be wary of this sign issue when using the epsilon symbols to explicitly raise or lower two or

more spinor indices of higher-rank spinors.8 Fortunately, such manipulations are quite rare in

practical calculations.

We also introduce the two-index symmetric Kronecker delta symbol,

δ11 = δ22 = 1 , δ12 = δ12 = 0 , (2.23)

and δβ̇α̇ ≡ (δβα)∗. Eq. (2.23) implies that the numerical values of the undotted and dotted

Kronecker delta symbols coincide. The epsilon symbols with undotted and with dotted indices

respectively satisfy:

ǫαβǫ
γδ = −δγαδδβ + δδαδ

γ
β , ǫα̇β̇ǫ

γ̇δ̇ = −δγ̇α̇δδ̇β̇ + δδ̇α̇δ
γ̇

β̇
, (2.24)

from which it follows that:

ǫαβǫ
βγ = ǫγβǫβα = δγα, ǫα̇β̇ǫ

β̇γ̇ = ǫγ̇β̇ǫβ̇α̇ = δγ̇α̇ , (2.25)

ǫαβǫγδ + ǫαγǫδβ + ǫαδǫβγ = 0 , ǫα̇β̇ǫγ̇δ̇ + ǫα̇γ̇ǫδ̇β̇ + ǫα̇δ̇ǫβ̇γ̇ = 0 . (2.26)

In the literature, eq. (2.26) is often referred to as the Schouten identities.9

7It would be perhaps more transparent to simply replace the symbol ǫαβ with ǫ−1
αβ , in which case ǫαβ is used

to raise spinor indices and ǫ−1
αβ is used to lower spinor indices (cf. ref. [38]). Although this convention avoids an

apparent conflict between eqs. (2.21) and (2.22), it doubles the number of distinct epsilon symbols. We shall not
adopt such an approach in this review.

8In the alternative convention mentioned in footnote 5, this particular awkwardness is absent; the minus signs
in the analogue of eq. (2.22) do not occur, in which case the rules for raising and lowering the spinor indices in
eqs. (2.21) and (2.22) are identical. More generally, in the convention of footnote 5, the indices of all higher-rank
spinors can be raised [lowered] via multiplication on the left [right] by the appropriate epsilon symbol, including
the epsilon symbols themselves, with no extra signs.

9The Schouten identities also follow from the observation that a rank-four spinor must vanish if it is antisym-
metric with respect to more than two undotted or dotted two-component spinor indices.

13



To construct Lorentz invariant Lagrangians and observables, one needs to first combine

products of spinors to make objects that transform as Lorentz tensors. In particular, Lorentz

vectors are obtained by introducing the sigma matrices σµ
αβ̇

and σµ α̇β defined by [1, 14,17,18]

σ0 = σ0 =

(
1 0

0 1

)
, σ1 = −σ1 =

(
0 1

1 0

)
,

σ2 = −σ2 =
(
0 −i
i 0

)
, σ3 = −σ3 =

(
1 0

0 −1

)
. (2.27)

The sigma matrices are hermitian, and have been defined above with an upper (contravariant)

index. We denote the 2 × 2 identity matrix by 12×2 and the three-vector of Pauli matrices by

~σ ≡ (σ1 , σ2 , σ3). Hence, eq. (2.27) is equivalent to:

σµ = (12×2 ; ~σ) , σµ = (12×2 ; −~σ) . (2.28)

We also define the corresponding quantities with lower (covariant) indices:

σµ = gµνσ
ν = (12×2 ; −~σ) , σµ = gµνσ

ν = (12×2 ; ~σ) . (2.29)

The relations between σµ and σµ are

σµαα̇ = ǫαβǫα̇β̇σ
µ β̇β , σµ α̇α = ǫαβǫα̇β̇σµ

ββ̇
, (2.30)

ǫαβσµβα̇ = ǫα̇β̇σ
µβ̇α , ǫα̇β̇σµ

αβ̇
= ǫαβσ

µα̇β . (2.31)

Consider a spinor of rank (n, n) denoted by Sα1α2...αnβ̇1β̇2...β̇n
. The object obtained by multi-

plying S by σµ1 β̇1α1 · · · σµn β̇nαn has the transformation properties of an nth rank contravariant

Lorentz tensor [29, 32, 115]. For example, there is a one-to-one correspondence between each

bi-spinor Vαβ̇ and the associated Lorentz four-vector V µ [1, 17,19,20,28,29],10

V µ ≡ 1
2σ

µβ̇αVαβ̇ , Vαβ̇ = V µσµαβ̇ . (2.32)

In particular, if V µ is a real four-vector then Vαβ̇ is hermitian (and vice versa). To clarify this

last remark, consider the bi-spinor Vαβ̇ regarded as a 2× 2 matrix. Then,11,12

(V T)αβ̇ ≡ Vβα̇ , (V ∗)α̇β ≡ (Vαβ̇)
∗ , (V †)αβ̇ ≡ (Vβα̇)

∗ = (V ∗)β̇α . (2.33)

10In the general relativity literature [42,46,60,92], the more common normalization is V µ ≡ 1√
2
σµβ̇αVαβ̇, which

yields Vαβ̇ = 1√
2
V µσµαβ̇ . In this context, the 1√

2
σµ
αβ̇

are often called the Infeld-van der Waerden symbols.
11As stressed in ref. [19], taking the transpose of Vαβ̇ interchanges its rows and columns without altering the

fact that the first spinor index is undotted and the second spinor index is dotted. Moreover, it is often useful to
further simplify the notation by defining Vα̇β ≡ (Vαβ̇)

∗ [i.e., omitting the asterisk in (V ∗)α̇β ]. In this notation,
an hermitian bi-spinor satisfies Vαβ̇ = Vα̇β.

12The reader is cautioned that some authors do not attach a significance to the relative placement of undotted
and dotted indices [16], and thus adopt a notational style for higher-rank spinors in which all undotted spinor
indices appear before the dotted indices (see, e.g., refs. [50, 69]). In this latter convention, one would define
(V ∗)βα̇ ≡ (Vαβ̇)

∗. However, we choose not to adopt this approach, as it is not particularly convenient for the
matrix interpretation of a bi-spinor where the row index traditionally precedes the column index.
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An hermitian bi-spinor satisfies V = V †, or equivalently Vαβ̇ = (V ∗)β̇α.

Rank-two spinors (with two undotted or with two dotted indices) can also be interpreted

as 2× 2 matrices. In the case of the rank-two spinor Wα
β, it is convenient to define:

(WT)α
β ≡W β

α , (W ∗)α̇
β̇ ≡ (Wα

β)∗ , (W †)β̇ α̇ ≡ (Wα
β)∗ = (W ∗)α̇

β̇ . (2.34)

Note that the matrix transposition of Wα
β interchanges the rows and columns of W without

altering the relative heights of the α and β indices. Similar results hold for Wαβ and Wαβ by

either lowering or raising the relevant spinor indices with the appropriate epsilon symbol.

When constructing Lorentz tensors from fermion fields, the heights of spinor indices must

be consistent in the sense that lowered indices must only be contracted with raised indices. As

a convention, descending contracted undotted indices and ascending contracted dotted indices,

α
α and α̇

α̇ , (2.35)

can be suppressed. In all spinor products given in this paper, contracted indices always have

heights that conform to eq. (2.35). For example, in an index-free notation, we define:

ξη ≡ ξαηα, (2.36)

ξ†η† ≡ ξ†α̇η
†α̇, (2.37)

ξ†σµη ≡ ξ†α̇σ
µα̇βηβ, (2.38)

ξσµη† ≡ ξασµ
αβ̇
η†β̇ . (2.39)

All the spinor-index-contracted products above have natural interpretations as products of ma-

trices and vectors by regarding ηα and η†α̇ as column vectors and ξ†α̇ and ξα as row vectors of the

two-dimensional spinor space. However, the reader is cautioned that in the index-free notation

(with undotted and dotted indices suppressed), the undaggered and daggered spinors cannot be

uniquely identified as column or row vectors until their locations within the spinor product are

specified. Nevertheless, the proper identifications are straightforward, as any spinor on the left

end of a spinor product can be identified as a row vector and any spinor on the right end of a

spinor product can be identified as a column vector.

For an anticommuting two-component spinor ψ, the product ψαψβ is antisymmetric with

respect to the interchange of the spinor indices α and β. Hence, this product of spinors must be

proportional to ǫαβ . Similar conclusions hold for the corresponding spinor products with raised

undotted indices and with lowered and raised dotted indices, respectively. Thus,

ψαψβ = −1
2ǫ
αβψψ , ψαψβ = 1

2ǫαβψψ , (2.40)

ψ† α̇ψ† β̇ = 1
2ǫ
α̇β̇ψ†ψ† , ψ†

α̇ψ
†
β̇
= −1

2ǫα̇β̇ψ
†ψ† , (2.41)
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where ψψ ≡ ψαψα and ψ†ψ† ≡ ψ†
α̇ψ

† α̇ as in eqs. (2.36) and (2.37). Note that the minus signs

above can be understood to be a consequence of the extra minus sign that arises when the indices

of the epsilon symbol are lowered or raised [cf. eqs. (2.21) and (2.22)].

The behavior of the spinor products under hermitian conjugation (for quantum field oper-

ators) or complex conjugation (for classical fields) is as follows:

(ξη)† = η†ξ† , (2.42)

(ξσµη†)† = ησµξ†, (2.43)

(ξ†σµη)† = η†σµξ, (2.44)

(ξσµσνη)† = η†σνσµξ† , (2.45)

where we have used the hermiticity properties, (σµ)† = σµ and (σµ)† = σµ. More generally,

(ξΣη)† = η†Σrξ
† , (ξΣη†)† = ηΣrξ

† , (2.46)

where in each case Σ stands for any sequence of alternating σ and σ matrices, and Σr is obtained

from Σ by reversing the order of all of the σ and σ matrices, since the sigma matrices are

hermitian. Eqs. (2.42)–(2.46) are applicable both to anticommuting and to commuting spinors.

The properties of the two-component spinor fields under the discrete C, P and T transfor-

mations are elucidated in refs. [39, 117]. The corresponding behaviors of the spinor products

under C, P and T are easily obtained (and are left as an exercise for the reader).

The following identities can be used to systematically simplify expressions involving prod-

ucts of σ and σ matrices:13

σµαα̇σ
β̇β
µ = 2δα

βδβ̇ α̇ , (2.47)

σµαα̇σµββ̇ = 2ǫαβǫα̇β̇ , (2.48)

σµα̇ασβ̇βµ = 2ǫαβǫα̇β̇ , (2.49)

[σµσν + σνσµ]α
β = 2gµνδα

β , (2.50)

[σµσν + σνσµ]α̇β̇ = 2gµνδα̇β̇ , (2.51)

σµσνσρ = gµνσρ − gµρσν + gνρσµ + iǫµνρκσκ , (2.52)

σµσνσρ = gµνσρ − gµρσν + gνρσµ − iǫµνρκσκ . (2.53)

In the literature, one sometimes sees eqs. (2.48) and (2.49) rewritten using the identity ǫabǫcd =

δacδbd − δadδbc. However, as this latter result does not formally respect covariance with respect

to the dotted and undotted indices, we shall not employ it here.

13Since the Kronecker delta symbol is symmetric under the interchange of its two indices, naively there is nothing

gained in writing δα
β and δβ̇ α̇, with the spinor indices staggered as shown, instead of δβα and δβ̇α̇, respectively.

Nevertheless, we often prefer to employ the former rather than the latter as it provides some insight into the
spinor index structure of the equation. For example, in eq. (2.50), α labels the row and β labels the column of
the product of sigma matrices. Neither σµσν nor σνσµ is symmetric under the interchange of the (suppressed)
spinor indices (although the sum of the two is symmetric). By writing δα

β on the right-hand side of eq. (2.50),
one formally maintains the index structure of each of the separate terms of the equation.
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Computations of cross-sections and decay rates generally require traces of alternating prod-

ucts of σ and σ matrices (e.g., see ref. [104]):

Tr[σµσν ] = Tr[σµσν ] = 2gµν , (2.54)

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ + iǫµνρκ) , (2.55)

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ − iǫµνρκ) . (2.56)

Traces involving a larger even number of σ and σ matrices can be systematically obtained from

eqs. (2.54)–(2.56) by repeated use of eqs. (2.50) and (2.51) and the cyclic property of the trace.

Traces involving an odd number of σ and σ matrices cannot arise, since there is no way to

connect the spinor indices consistently.

In addition to manipulating expressions containing anticommuting fermion quantum fields,

we often must deal with products of commuting spinor wave functions that arise when evaluating

the Feynman rules. In the following expressions we denote the generic spinor by zi. In the

various identities listed below, an extra minus sign arises when interchanging the order of two

anticommuting fermion fields of a given spinor index height. It is convenient to introduce the

notation:

(−1)A ≡
{

+1 , commuting spinors,

−1 , anticommuting spinors.
(2.57)

The following identities hold for the zi:

z1z2 = −(−1)Az2z1 , (2.58)

z†1z
†
2 = −(−1)Az

†
2z

†
1 , (2.59)

z1σ
µz†2 = (−1)Az†2σµz1 , (2.60)

z1σ
µσνz2 = −(−1)Az2σνσµz1 , (2.61)

z†1σ
µσνz†2 = −(−1)Az†2σνσµz

†
1 , (2.62)

z†1σ
µσρσνz2 = (−1)Az2σνσρσµz†1 , (2.63)

and so on.14 The hermiticity properties of the spinor products given in eqs. (2.42)–(2.46) hold

for both commuting and anticommuting spinors, with no additional sign factor.

Two-component spinor products can often be simplified by using Fierz identities. Due to the

antisymmetry of the suppressed two-index epsilon symbol [or equivalently, using the Schouten

identities given in eq. (2.26)], the following identities are obtained:

(z1z2)(z3z4) = −(z1z3)(z4z2)− (z1z4)(z2z3) , (2.64)

(z†1z
†
2)(z

†
3z

†
4) = −(z

†
1z

†
3)(z

†
4z

†
2)− (z†1z

†
4)(z

†
2z

†
3) , (2.65)

14In particular, if z is a commuting spinor, then zz = z†z† = 0, as emphasized in refs. [16,19].
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where we have used eqs. (2.58) and (2.59) to eliminate any residual factors of (−1)A. Similarly,

eqs. (2.47)–(2.49) can be used to derive additional Fierz identities,

(z1σ
µz†2)(z

†
3σµz4) = −2(z1z4)(z

†
2z

†
3) , (2.66)

(z†1σ
µz2)(z

†
3σµz4) = 2(z†1z

†
3)(z4z2) , (2.67)

(z1σ
µz†2)(z3σµz

†
4) = 2(z1z3)(z

†
4z

†
2) . (2.68)

Having eliminated all factors of (−1)A, eqs. (2.64)–(2.68) hold for both commuting and anti-

commuting spinors.

From the sigma matrices, one can construct the antisymmetrized products:15

(σµν)α
β ≡ i

4

(
σµαγ̇σ

νγ̇β − σναγ̇σµγ̇β
)
, (2.69)

(σµν)α̇β̇ ≡
i

4

(
σµα̇γσνγβ̇ − σνα̇γσµγβ̇

)
. (2.70)

Equivalently, we can use eqs. (2.50) and (2.51) to write:

(σµσν)α
β = gµνδα

β − 2i(σµν)α
β , (2.71)

(σµσν)α̇β̇ = gµνδα̇β̇ − 2i(σµν)α̇β̇ . (2.72)

The components of σµν and σµν are easily evaluated:

σij = σij = 1
2ǫ
ijkσk , σi0 = −σ0i = −σi0 = σ0i = 1

2 iσ
i . (2.73)

The matrices σµν and σµν satisfy self-duality relations,

σµν = −1
2 iǫ

µνρκσρκ , σµν = 1
2 iǫ

µνρκσρκ . (2.74)

The self-duality relations can be used to obtain the following two identities:

gκρσµν − gνρσµκ + gµρσνκ − iǫµνκλσλρ = 0 , (2.75)

gκρσµν − gνρσµκ + gµρσνκ + iǫµνκλσ
λρ = 0 . (2.76)

A number of useful properties and identities involving σµν and σµν can be derived. For

example, eq. (2.24) implies that:

(σµν)α
β = ǫατ ǫ

βγ(σµν)γ
τ , (σµν)α̇β̇ = ǫα̇τ̇ ǫβ̇γ̇(σ

µν)γ̇ τ̇ , (2.77)

ǫτα(σµν)α
β = ǫβγ(σµν)γ

τ , ǫτ̇ α̇(σ
µν)α̇β̇ = ǫβ̇γ̇(σ

µν)γ̇ τ̇ , (2.78)

ǫγβ(σ
µν)α

β = ǫατ (σ
µν)γ

τ , ǫγ̇β̇(σµν)α̇β̇ = ǫα̇τ̇ (σµν)γ̇ τ̇ . (2.79)

15The reader is cautioned that σµν and σµν are sometimes defined in the literature without the factor of i in
eqs. (2.69) and (2.70) (as in ref. [77]), or with an overall factor of 1

2
i (as in ref. [71]) instead of 1

4
i.
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Using eqs. (2.47)–(2.53), the following identities can be obtained:

(σµν)α
β
(σµν)γ

τ
= ǫαγ ǫ

βτ + δα
τ
δγ
β
= 2δα

τ
δγ
β − δαβδγ

τ
, (2.80)

(σµν)α̇β̇(σµν)
γ̇
τ̇ = ǫα̇γ̇ ǫβ̇τ̇ + δα̇τ̇ δ

γ̇
β̇ = 2δα̇τ̇ δ

γ̇
β̇ − δ

α̇
β̇ δ

γ̇
τ̇ , (2.81)

(σµν)α
β(σµν)

γ̇
τ̇ = 0 , (2.82)

σµνσρ = 1
2 i (g

νρσµ − gµρσν + iǫµνρκσκ) , (2.83)

σµνσρ = 1
2 i (g

νρσµ − gµρσν − iǫµνρκσκ) , (2.84)

σµσνρ = 1
2 i (g

µνσρ − gµρσν − iǫµνρκσκ) , (2.85)

σµσνρ = 1
2 i (g

µνσρ − gµρσν + iǫµνρκσκ) , (2.86)

σµνσρκ = −1
4 (g

νρgµκ − gµρgνκ + iǫµνρκ) + 1
2 i (g

νρσµκ + gµκσνρ − gµρσνκ − gνκσµρ) , (2.87)

σµνσρκ = −1
4 (g

νρgµκ − gµρgνκ − iǫµνρκ) + 1
2 i (g

νρσµκ + gµκσνρ − gµρσνκ − gνκσµρ) . (2.88)

Eqs. (2.87) and (2.88) and the antisymmetry of σµν and σµν yield the following trace formulae:

Tr σµν = Tr σµν = 0 , (2.89)

Tr[σµνσρκ] = 1
2 [g

µρgνκ − gµκgνρ − iǫµνρκ] , (2.90)

Tr[σµνσρκ] = 1
2 [g

µρgνκ − gµκgνρ + iǫµνρκ] . (2.91)

The properties of spinor products involving σµν and σµν are easily derived. Under hermitian

conjugation (for quantum field operators) or complex conjugation (for classical fields),

(ξσµνη)† = η†σµνξ† , (2.92)

due to the hermiticity relation, (σµν)† = σµν . Next, we use eqs. (2.61) and (2.62) to obtain:

z1σ
µνz2 = (−1)Az2σµνz1 , (2.93)

z†1σ
µνz†2 = (−1)Az†2σµνz

†
1 . (2.94)

One can also derive additional Fierz identities, which follow from eqs. (2.80)–(2.82),

(z1σ
µνz2)(z3σµνz4) = −2(z1z4)(z2z3)− (z1z2)(z3z4) , (2.95)

(z†1σ
µνz†2)(z

†
3σµνz

†
4) = −2(z

†
1z

†
4)(z

†
2z

†
3)− (z†1z

†
2)(z

†
3z

†
4) , (2.96)

(z1σ
µνz2)(z

†
3σµνz

†
4) = 0 , (2.97)

where we have again used eqs. (2.58) and (2.59) to eliminate any residual factors of (−1)A. Thus,
eqs. (2.95)–(2.97) hold for both commuting and anticommuting spinors. A more comprehensive

list of sigma matrix identities and their associated Fierz identities are given in Appendix B.1

(see also Appendix B of ref. [77]).

The σµν and σµν satisfy the commutation relations of the Jµν [cf. eq. (2.14)], and thus

can be identified as the generators of the Lorentz group in the (12 , 0) and (0, 12) representations,
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respectively. That is, for the (12 , 0) representation with a lowered undotted index (e.g. ψα),

Jµν = σµν , while for the (0, 12) representation with a raised dotted index (e.g. ψ†α̇), Jµν = σµν .

In particular, the infinitesimal forms for the 4 × 4 Lorentz transformation matrix Λ and the

corresponding matrices M and (M−1)† that transform the (12 , 0) and (0, 12 ) spinors, respectively,

are given by:

Λµν ≃ δµν + 1
2

(
θανg

αµ − θνβgβµ
)
, (2.98)

M ≃ 12×2 − 1
2 iθµνσ

µν , (2.99)

(M−1)† ≃ 12×2 − 1
2 iθµνσ

µν . (2.100)

The inverses of these quantities are obtained (to first order in θ) by replacing θ → −θ in the

above formulae. Using eqs. (2.77), (2.99) and (2.100), it follows that:

(M−1)γ
τ = ǫταMα

βǫβγ , (2.101)

(M−1 †)γ̇ τ̇ = ǫτ̇ α̇ (M
†)α̇β̇ ǫ

β̇γ̇ . (2.102)

These results can be used to demonstrate the covariance (with respect to Lorentz transfor-

mations) of the spinor index raising and lowering properties of the epsilon symbols defined

in eq. (2.20). The infinitesimal forms given by eqs. (2.98)–(2.100) can also be used [with the

assistance of eqs. (2.83)–(2.85)] to establish the following two results:

M †σµM = Λµν σ
ν , (2.103)

M−1σµ(M−1)† = Λµν σ
ν . (2.104)

Using the Lorentz transformation properties of the undotted and dotted two-component spinor

fields, eqs. (2.103) and (2.104) can be used, respectively, to prove that the spinor products ξ†σµη

and ξσµη† transform as Lorentz four-vectors.

As an example, consider a pure boost from the rest frame to a frame where pµ = (Ep , ~p),

which corresponds to θij = 0 and ζ i = θi0 = −θ0i. We assume that the mass-shell condition

is satisfied, i.e. p0 = E~p ≡ (|~p|2 +m2)1/2. The matrices Mα
β and [(M−1)†]α̇β̇ that govern the

Lorentz transformations of spinor fields with a lowered undotted index and spinor fields with a

raised dotted index, respectively, are given by:

exp

(
− i
2
θµνJ

µν

)
=





M = exp
(
−1

2
~ζ · ~σ

)
=

√
p·σ
m

, for (12 , 0) ,

(M−1)† = exp
(
1
2
~ζ · ~σ

)
=

√
p·σ
m

, for (0, 12 ) ,

(2.105)

where

√
p·σ ≡ (Ep +m)12×2 − ~σ ·~p√

2(Ep +m)
, (2.106)

√
p·σ ≡ (Ep +m)12×2 + ~σ ·~p√

2(Ep +m)
. (2.107)
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These matrix square roots are defined to be the unique non-negative definite hermitian matri-

ces (i.e., with non-negative eigenvalues) whose squares are equal to the non-negative definite

hermitian matrices p·σ and p·σ, respectively.16

According to eq. (2.105), the spinor index structure of
√
p·σ and

√
p·σ corresponds to that

of Mα
β and [(M−1)†]α̇β̇, respectively. In this case, we can rewrite eqs. (2.106) and (2.107) as:

[√
p·σ

]
α
β ≡

[√
p·σ σ0

]
α
β =

(p·σαα̇)σ0 α̇β +mδβα√
2(Ep +m)

, (2.108)

[√
p·σ

]α̇
β̇ ≡

[√
p·σ σ0

]α̇
β̇ =

(p·σα̇α)σ0
αβ̇

+mδα̇
β̇√

2(Ep +m)
, (2.109)

since σ0 = σ0 = 12×2. Using eqs. (2.52) and (2.53), one can easily verify that:

[√
p·σ

]
α
γ
[√
p·σ

]
γ
β = (p·σ σ0)αβ , (2.110)

[√
p·σ

]α̇
γ̇

[√
p·σ

]γ̇
β̇ = (p·σ σ0)α̇β̇ , (2.111)

where implicit factors of σ0 and σ0 inside the square roots of eq. (2.110) have been suppressed.

Due to the fact that p·σ and p·σ are hermitian, we could have defined their hermitian

matrix square roots by the hermitian conjugate of eq. (2.105). In this case, the spinor index

structure of
√
p·σ and

√
p·σ would correspond to that of [(M †]α̇β̇ and [M−1]α

β , respectively.

That is, instead of eqs. (2.108) and (2.109), we would now rewrite eqs. (2.106) and (2.107) in

the following form:

[√
p·σ

]α̇
β̇ ≡

[√
σ0 p·σ

]α̇
β̇ =

σ0 α̇β(p·σββ̇) +mδα̇
β̇√

2(Ep +m)
, (2.112)

[√
p·σ

]
α
β ≡

[√
σ0 p·σ

]
α
β =

σ0
αβ̇

(p·σβ̇β) +mδβα
√

2(Ep +m)
. (2.113)

Using eqs. (2.52) and (2.53), one can again confirm that:

[√
p·σ

]α̇
γ̇

[√
p·σ

]γ̇
β̇ = (σ0 p·σ)α̇β̇ , (2.114)

[√
p·σ

]
α
γ
[√

p·σ
]
γ
β = (σ0 p·σ)αβ , (2.115)

where implicit factors of σ0 and σ0 inside the square roots of eq. (2.114) have been suppressed.

The proper choice of the spinor index structure for
√
p·σ and

√
p·σ can always be determined

for any covariant expression. That is, if we employ the spinor index-free notation (and suppress

the factors of σ0 and σ0), it will always be clear from the context which spinor index structure

for
√
p·σ and

√
p·σ is implicit.

16Note that p·σ and p·σ are non-negative matrices due to the implicit mass-shell condition satisfied by pµ.

21



As an example that will prove valuable later on, consider an arbitrary four-vector Sµ,

defined in a reference frame where pµ = (E ; ~p), whose rest frame value is SµR, i.e.

Sµ = ΛµνS
ν
R , with Λ =



E/m pj/m

pi/m δij +
pipj

m(E +m)


 . (2.116)

Then, using eqs. (2.7), (2.104) and (2.105), it follows that:

√
p·σ S ·σ√p·σ = mSR ·σ , (2.117)

√
p·σ S ·σ

√
p·σ = mSR ·σ . (2.118)

The spinor index structure of eqs. (2.117) and (2.118) is easily established:

[√
p·σ

]β̇
γ̇ S ·σγ̇α

[√
p·σ

]
α
β = mSR ·σβ̇β , (2.119)

[√
p·σ

]
β
γ S ·σγα̇

[√
p·σ

]α̇
β̇ = mSR ·σββ̇ . (2.120)

Using eqs. (2.108)–(2.116) and (2.52)–(2.53), one can directly verify the above results.

The two-component spinor formalism established in this section will be applied to the

quantum field theory of fermions in Minkowski space of one time and three space dimensions

in this review. We also direct the reader’s attention to Appendices G.1 and G.2, which provide

details of the correspondence between the two-component and four-component spinor notation.

For certain applications, the spinor formalism in four-dimensional Minkowski space is not

sufficient. For example, in order to obtain instanton solutions [118–120], it is necessary to for-

mulate quantum field theory in Euclidean space. One also needs the Euclidean space formalism

for a rigorous definition of the path integral [121, 122]. The Green functions derived from the

Euclidean path integral can be related to the Green functions of the Minkowski space theory

by a Wick rotation [123]. In addition, to evaluate the loop-corrected Green functions of the

theory, it is often most convenient to apply a regularization scheme that involves dimensional

continuation away from d = 4 spacetime dimensions [124]. Thus, we also need to generalize the

spinor results of this section to d 6= 4.

The treatment of fermions in Euclidean space is subtle [125–127]. Here, we focus briefly

on the mathematics of fermions in d = 4 Euclidean dimensions, where the relevant space-

time symmetry group is SO(4) rather than SO(3,1). The two-dimensional representations of

SO(3,1)∼=SL(2,C), denoted in this section by (12 , 0) and (0, 12), respectively, are complex repre-

sentations that are related by hermitian conjugation. In contrast, the two-dimensional represen-

tations of SO(4)∼=SU(2)×SU(2), also denoted by (12 , 0) and (0, 12), respectively,
17 are independent

pseudo-real representations, i.e. not related by hermitian conjugation. A two-component spinor

17These SO(4) representations transform as a doublet under one of the SU(2) groups and as a singlet under the
other SU(2) group.
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notation can be formulated for fields that transform respectively under the (12 , 0) and (0, 12 )

representations of SO(4). Details can be found in refs. [119,128,129].

In Feynman diagram calculations, one can adopt the standard procedure for the Wick

rotation in order to evaluate the loop integrals in Euclidean space. We shall employ the standard

Euclidean metric δµν in computing scalar products of four-vectors. Moreover, one can define

Euclidean sigma matrices, σµE = (−i~σ , σ4E) and σµE = (i~σ , σ 4
E), where σ

4
E = σ 4

E ≡ 12×2. In

this convention, the Wick-rotated versions of eqs. (2.50)–(2.56) are preserved [after making the

replacements gµν → δµν and iǫijk0 → ǫijk4, with ǫ1234 = ǫ1234 = +1].18 Further details of our

Euclidean space conventions are provided at the end of Appendix A.

The generalization of the spinor results of this section to d 6= 4, useful for dimensional

continuation regularization schemes, is discussed in Appendix B.2. In particular, the identities

of Appendix B.1 used to derive Fierz identities [cf. eqs. (2.64)–(2.68) and (2.95)–(2.97)] and any

identities involving the four-dimensional Levi-Civita ǫ-tensor are not valid unless µ is a Lorentz

vector index in exactly four dimensions. In d 6= 4 dimensions, as used for loop amplitudes in

dimensional regularization and dimensional

In our treatment of two-component spinor identities in d 6= 4 dimensions given in Ap-

pendix B.2, we take the Lorentz vector indices to formally run over d values, whereas the undot-

ted and dotted spinor indices continue to take on two possible values. This is sufficient when used

as a regularization procedure for divergent integrals that arise in loop computations. However in

generic d-dimensional field theories (where d is a positive integer), where d is an integer greater

than 4, the two-component spinor formalism of this review is no longer applicable. Suitable

methods for treating spinors in diverse spacetime dimensions and signatures [90,91,130–142] are

briefly presented in Appendix G.3.

3 Properties of fermion fields

In this review, we refer to spin-1/2 particles as Majorana or Dirac fermions depending on the

nature of the global symmetry19 that governs the fermion Lagrangian and dictates the form of the

fermion mass terms. A Majorana fermion is a two-component massive field that is completely

neutral (i.e. a singlet with respect to the symmetry group) or transforms as a non-trivial real

representation of the symmetry group (cf. footnote 31). A Dirac fermion consists of a pair

of two-component massive fields that are oppositely charged with respect to a conserved O(2)

symmetry. As shown in Section 3.2, Dirac fermions arise when a multiplet of two-component

18In practical computations of one-loop matrix elements, one can carry out all the sigma matrix algebra in
Minkowski space before Wick-rotating to Euclidean space in order to perform the loop integrals.

19A subgroup of the global symmetry group may be gauged (and hence promoted to a local symmetry). Degrees
of freedom not associated with the gauged subgroup are typically referred to as flavor degrees of freedom.
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fermions transforms as a complex or pseudo-real representation of the symmetry group.20

The case of a massless fermion is special, as the absence of mass terms leads to an enhanced

global symmetry group. Each physical spin-1/2 zero-mass eigenstate is fundamentally a two-

component spinor. Thus, following the standard nomenclature used for massless neutrinos, it is

common to employ the term massless Weyl fermion to describe any massless spin-1/2 particle.21

3.1 The two-component fermion field and spinor wave functions

We begin by describing the properties of a free neutral massive anticommuting spin-1/2 field,

denoted ξα(x), which transforms as (12 , 0) under the Lorentz group. The field ξα therefore

describes a Majorana fermion [3]. The free-field Lagrangian density is [16]:

L = iξ†σµ∂µξ − 1
2m(ξξ + ξ†ξ†) . (3.1.1)

On-shell, ξ satisfies the free-field Dirac equation [1, 2, 14,143,144],

iσµα̇β∂µξβ = mξ†α̇ . (3.1.2)

Consequently after quantization, ξα can be expanded in a Fourier series [143]:

ξα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
xα(~p, s)a(~p, s)e

−ip·x + yα(~p, s)a
†(~p, s)eip·x

]
, (3.1.3)

where Ep ≡ (|~p|2 +m2)1/2, and the creation and annihilation operators a† and a satisfy anti-

commutation relations:

{a(~p, s), a†(~p ′, s′)} = δ3(~p − ~p ′)δss′ , (3.1.4)

and all other anticommutators vanish. It follows that

ξ†α̇(x) ≡ (ξα)
† =

∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
x†α̇(~p, s)a

†(~p, s)eip·x + y†α̇(~p, s)a(~p, s)e
−ip·x

]
. (3.1.5)

We employ covariant normalization of the one-particle states, i.e., we act with one creation

operator on the vacuum with the following convention

|~p, s〉 ≡ (2π)3/2(2Ep)
1/2a†(~p, s) |0〉 , (3.1.6)

so that
〈
~p, s|~p ′, s′

〉
= (2π)3(2Ep)δ

3(~p− ~p ′)δss′ . Therefore,

〈0| ξα(x) |~p, s〉 = xα(~p, s)e
−ip·x , 〈0| ξ†α̇(x) |~p, s〉 = y†α̇(~p, s)e

−ip·x , (3.1.7)

〈~p, s| ξα(x) |0〉 = yα(~p, s)e
ip·x , 〈~p, s| ξ†α̇(x) |0〉 = x†α̇(~p, s)e

ip·x . (3.1.8)

20Majorana and Dirac fermions can also be described in terms of four-component Majorana and Dirac spinor
fields, as in Appendix G. However, keep in mind that the terms Majorana spinor and Dirac spinor are defined
strictly in the context of the four-component spinor formalism as in Appendix G.1, or in the more general context
of a d-dimensional spacetime as in Appendix G.3.

21Two-component fermions are often called Weyl fermions, due to their association with the two-dimensional
spinor representations of the Lorentz group introduced by Weyl in refs. [14, 15]. It is now common practice to
define a Weyl spinor as the left or right-handed projection of a four-component spinor [as in eq. (G.1.8)]. Of
course, there is a one-to-one correspondence between these two definitions.
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It should be emphasized that ξα(x) is an anticommuting spinor field, whereas xα and yα are

commuting two-component spinor wave functions. The anticommuting properties of the fields

are carried by the creation and annihilation operators.

Applying eq. (3.1.2) to eq. (3.1.3), we find that the xα and yα satisfy momentum space

Dirac equations. These conditions can be written down in a number of equivalent ways:

(p·σ)α̇βxβ = my†α̇ , (p·σ)αβ̇y†β̇ = mxα , (3.1.9)

(p·σ)αβ̇x†β̇ = −myα , (p·σ)α̇βyβ = −mx†α̇ , (3.1.10)

xα(p·σ)αβ̇ = −my†
β̇
, y†α̇(p·σ)α̇β = −mxβ , (3.1.11)

x†α̇(p·σ)α̇β = myβ , yα(p·σ)αβ̇ = mx†
β̇
. (3.1.12)

Using the identities [(p·σ)(p·σ)]αβ = p2 δα
β and [(p·σ)(p·σ)]α̇β̇ = p2 δα̇β̇, one can check that

both xα and yα must satisfy the mass-shell condition, p2 = m2 (or equivalently, p0 = Ep). We

will later see that eqs. (3.1.9)–(3.1.12) are often useful for simplifying matrix elements.

The quantum number s labels the spin or helicity of the spin-1/2 fermion. We shall examine

two approaches for constructing the spin-1/2 states. In the first approach, we consider the

particle in its rest frame and quantize the spin along a fixed axis specified by the unit vector

ŝ ≡ (sin θ cosφ , sin θ sinφ , cos θ) with polar angle θ and azimuthal angle φ with respect to a

fixed z-axis.22 The corresponding spin states will be called fixed-axis spin states. The relevant

basis of two-component spinors χs are eigenstates of 1
2~σ ·ŝ, i.e.,

1
2~σ ·ŝχs = sχs , s = ±1

2 . (3.1.13)

Explicit forms for the two-component spinors χs and their properties are given in Appendix C.

The fixed-axis spin states described above are not very convenient for particles in relativistic

motion. Moreover, these states cannot be employed for massless particles since no rest frame

exists. Thus, a second approach is to consider helicity states and the corresponding basis of

two-component helicity spinors χλ that are eigenstates of 1
2~σ ·p̂, i.e.,

1
2~σ ·p̂χλ = λχλ, λ = ±1

2 . (3.1.14)

Here p̂ is the unit vector in the direction of the three-momentum, with polar angle θ and

azimuthal angle φ with respect to a fixed z-axis. That is, the two-component helicity spinors

can be obtained from the fixed-axis spinors by replacing ŝ by p̂ and identifying θ and φ as the

polar and azimuthal angles of p̂.

For fermions of massm 6= 0, it is possible to define the spin four-vector Sµ, which is specified

in the rest frame by (0; ŝ). The unit three-vector ŝ corresponds to the axis of spin quantization

22In the literature, it is a common practice to choose ŝ = ẑ. However in order to be somewhat more general,
we shall not assume this convention here.
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in the case of fixed-axis spin states. In an arbitrary reference frame, the spin four-vector satisfies

S ·p = 0 and S ·S = −1. After boosting from the rest frame to a frame in which pµ = (E , ~p)

[cf. eq. (2.116)], one finds:

Sµ =

(
~p·ŝ

m
; ŝ+

(~p·ŝ) ~p

m(E +m)

)
. (3.1.15)

If necessary, we shall write Sµ(ŝ) to emphasize the dependence of Sµ on ŝ.

The spin four-vector for helicity states is defined by taking ŝ = p̂. Eq. (3.1.15) then

reduces to

Sµ =
1

m
(|~p| ; Ep̂) . (3.1.16)

In the non-relativistic limit, the spin four-vector for helicity states is Sµ ≃ (0 ; p̂), as expected.23

In the high energy limit (E ≫ m), Sµ = pµ/m + O(m/E). For a massless fermion, the spin

four-vector does not exist (as there is no rest frame). Nevertheless, one can obtain consistent

results by working with massive helicity states and taking the m → 0 limit at the end of the

computation. In this case, one can simply use Sµ = pµ/m+O(m/E); in practical computations

the final result will be well-defined in the zero mass limit. In contrast, for massive fermions at

rest, the helicity state does not exist without reference to some particular boost direction as

noted in footnote 23.

Using eqs. (2.117) and (2.118) with SµR = (0 ; ŝ), two important formulae are obtained:

√
p·σ S ·σ√p·σ = m~σ ·ŝ , (3.1.17)

√
p·σ S ·σ

√
p·σ = −m~σ ·ŝ . (3.1.18)

These results can also be derived directly by employing the explicit form for the spin vector Sµ

[eq. (3.1.15)] and the results of eqs. (2.106) and (2.107).

The two-component spinor wave functions x and y can now be given explicitly in terms of

the χs defined in eq. (C.1.11). First, we note that eq. (3.1.9) when evaluated in the rest frame

yields x1 = y†1 and x2 = y†2. That is, as column vectors, xα(~p = 0) = y†α̇(~p = 0) can be

expressed in general as some linear combination of the χs (s = ±1
2). Hence, we may choose

xα(~p = 0, s) = y†α̇(~p = 0, s) =
√
mχs, where the factor of

√
m reflects the standard relativistic

normalization of the rest frame spin states. These wave functions can be boosted to an arbitrary

frame using eq. (2.105). The resulting undotted spinor wave functions are given by:

xα(~p, s) =
√
p·σ χs , xα(~p, s) = −2sχ†

−s
√
p·σ , (3.1.19)

yα(~p, s) = 2s
√
p·σ χ−s , yα(~p, s) = χ†

s

√
p·σ , (3.1.20)

and the dotted spinor wave functions are given by

x†α̇(~p, s) = −2s
√
p·σ χ−s , x†α̇(~p, s) = χ†

s

√
p·σ , (3.1.21)

y†α̇(~p, s) =
√
p·σ χs , y†α̇(~p, s) = 2sχ†

−s
√
p·σ , (3.1.22)

23Strictly speaking, p̂ is not defined in the rest frame. In practice, helicity states are defined in some moving
frame with momentum ~p. The rest frame is achieved by boosting in the direction of −~p.
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where
√
p·σ and

√
p·σ are defined either by eqs. (2.108) and (2.109) or by eqs. (2.112) and

(2.113), respectively (as mandated by the spinor index structure).24 Note that eqs. (3.1.19)–

(3.1.22) imply that the x and y spinors are related:

y(~p, s) = 2sx(~p,−s) , y†(~p, s) = 2sx†(~p,−s) . (3.1.23)

The phase choices in eqs. (3.1.19)–(3.1.22) are consistent with those employed for four-

component spinor wave functions [see Appendix G]. We again emphasize that in eqs. (3.1.19)–

(3.1.22), one may either choose χs to be an eigenstate of ~σ ·ŝ, where the spin is measured in the

rest frame along the quantization axis ŝ, or choose χs to be an eigenstate of ~σ ·p̂ (in this case

we shall write s = λ), which yields the helicity spinor wave functions.

The following equations can now be derived:

(S ·σ)α̇βxβ(~p, s) = 2sy†α̇(~p, s) , (S ·σ)αβ̇y
†β̇(~p, s) = −2sxα(~p, s) , (3.1.24)

(S ·σ)αβ̇x†β̇(~p, s) = −2syα(~p, s) , (S ·σ)α̇βyβ(~p, s) = 2sx†α̇(~p, s) , (3.1.25)

xα(~p, s)(S ·σ)αβ̇ = −2sy†
β̇
(~p, s) , y†α̇(~p, s)(S ·σ)α̇β = 2sxβ(~p, s) , (3.1.26)

x†α̇(~p, s)(S ·σ)α̇β = 2syβ(~p, s) , yα(~p, s)(S ·σ)αβ̇ = −2sx†
β̇
(~p, s) . (3.1.27)

For example, using eqs. (3.1.17) and (3.1.18) and the definitions above for xα(~p, s) and y
†α̇(~p, s),

we find (suppressing spinor indices),

√
p·σ S ·σ x(~p, s) = √p·σ S ·σ√p·σ χs = m~σ ·ŝχs = 2smχs . (3.1.28)

Multiplying both sides of eq. (3.1.28) by
√
p·σ and noting that

√
p·σ√p·σ = m, we end up with

S ·σ x(~p, s) = 2s
√
p·σ χs = 2sy†(~p, s) . (3.1.29)

All the results of eqs. (3.1.24)–(3.1.27) can be derived in this manner.

The consistency of eqs. (3.1.24)–(3.1.27) can also be checked as follows. First, each of these

equations yields

(S ·σ)αα̇(S ·σ)α̇β = −δβα , (S ·σ)α̇α(S ·σ)αβ̇ = −δα̇
β̇
, (3.1.30)

after noting that 4s2 = 1 (for s = ±1
2). From eqs. (2.50) and (2.51) it follows that S ·S = −1,

as required. Second, if one applies

(p·σ S ·σ + S ·σ p·σ)αβ = 2p·S δαβ , (3.1.31)

(p·σ S ·σ + S ·σ p·σ)α̇β̇ = 2p·S δα̇β̇ , (3.1.32)

to eqs. (3.1.9)–(3.1.12) and eqs. (3.1.24)–(3.1.27), it follows that p·S = 0.

24Explicit forms for two-component spinor wave functions have been exhibited a number of times in the litera-
ture. For example, see refs. [104,105] and Appendix I.1.
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It is useful to combine the results of eqs. (3.1.9)–(3.1.12) and eqs. (3.1.24)–(3.1.27) as follows:

(pµ − 2smSµ)σα̇βµ xβ(~p, s) = 0 , (pµ − 2smSµ)σ
µ

αβ̇
x†β̇(~p, s) = 0 , (3.1.33)

(pµ + 2smSµ)σα̇βµ yβ(~p, s) = 0 , (pµ + 2smSµ)σ
µ

αβ̇
y†β̇(~p, s) = 0 , (3.1.34)

xα(~p, s)σµ
αβ̇

(pµ − 2smSµ) = 0 , x†α̇(~p, s)σ
α̇β
µ (pµ − 2smSµ) = 0 , (3.1.35)

yα(~p, s)σµ
αβ̇

(pµ + 2smSµ) = 0 , y†α̇(~p, s)σ
α̇β
µ (pµ + 2smSµ) = 0 . (3.1.36)

Eqs. (3.1.19)–(3.1.36) also apply to the helicity wave functions x(~p, λ) and y(~p, λ) simply by

replacing s with λ and Sµ(ŝ) [eq. (3.1.15)] with Sµ(p̂) [eq. (3.1.16)].

The above results are applicable only for massive fermions (where the spin four-vector Sµ

exists). We may treat the case of massless fermions directly by employing helicity spinors in

eqs. (3.1.19)–(3.1.22). Putting E = |~p| and m = 0, we easily obtain:

xα(~p, λ) =
√
2E (12 − λ)χλ , xα(~p, λ) =

√
2E (12 − λ)χ

†
−λ , (3.1.37)

yα(~p, λ) =
√
2E (12 + λ)χ−λ , yα(~p, λ) =

√
2E (12 + λ)χ†

λ , (3.1.38)

or equivalently,

x†α̇(~p, λ) =
√
2E (12 − λ)χ−λ , x†α̇(~p, λ) =

√
2E (12 − λ)χ

†
λ , (3.1.39)

y†α̇(~p, λ) =
√
2E (12 + λ)χλ , y†α̇(~p, λ) =

√
2E (12 + λ)χ†

−λ . (3.1.40)

It follows that:

(
1
2 + λ

)
x(~p, λ) = 0 ,

(
1
2 + λ

)
x†(~p, λ) = 0 , (3.1.41)

(
1
2 − λ

)
y(~p, λ) = 0 ,

(
1
2 − λ

)
y†(~p, λ) = 0 . (3.1.42)

The significance of eqs. (3.1.41) and (3.1.42) is clear; for massless fermions, only one helicity

component of x and y is non-zero. Applying this result to neutrinos, we find that massless

neutrinos are left-handed (λ = −1/2), while antineutrinos are right-handed (λ = +1/2).

Eqs. (3.1.41) and (3.1.42) can also be derived by carefully taking the m → 0 limit of

eqs. (3.1.33) and (3.1.34) applied to the helicity wave functions x(~p, λ) and y(~p, λ) [i.e., replacing

s with λ]. We then replace mSµ with pµ, which is the leading term in the limit of E ≫ m.

Using the results of eqs. (3.1.9) and (3.1.10) and dividing out by an overall factor of m (before

finally taking the m→ 0 limit) reproduces eqs. (3.1.41) and (3.1.42).

Having defined explicit forms for the two-component spinor wave functions, we can now

write down the spin projection matrices. Noting that 1
2 (1+2s~σ ·ŝ)χs′ =

1
2(1+4ss′)χs′ = δss′χs′

(since s, s′ = ±1
2), one can write:

χsχ
†
s
= 1

2 (1 + 2s~σ ·ŝ)
∑

s′
χs′χ

†
s′ =

1
2 (1 + 2s~σ ·ŝ) , (3.1.43)
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where at the second step, we have employed the completeness relation given in eq. (C.1.21).

Making use of eq. (3.1.17) for ~σ ·ŝ, it follows that

χsχ
†
s
= 1

2

(
1 +

2s

m

√
p·σ S ·σ√p·σ

)
. (3.1.44)

Hence, with both spinor indices in the lowered position,

x(~p, s)x†(~p, s) =
√
p·σ χsχ†

s

√
p·σ

= 1
2

√
p·σ

[
1 +

2s

m

√
p·σS ·σ√p·σ

]√
p·σ

= 1
2

[
p·σ +

2s

m
p·σS ·σp·σ

]

= 1
2 [p·σ − 2smS ·σ] . (3.1.45)

In the final step above, we simplified the product of three dot products by noting that p·S = 0

implies that S ·σ p·σ = −p·σ S ·σ. The other spin projection formulae for massive fermions can

be similarly derived. The complete set of such formulae is given below:25

xα(~p, s)x
†
β̇
(~p, s) = 1

2(pµ − 2smSµ)σ
µ

αβ̇
, (3.1.46)

y†α̇(~p, s)yβ(~p, s) = 1
2 (p

µ + 2smSµ)σα̇βµ , (3.1.47)

xα(~p, s)y
β(~p, s) = 1

2

(
mδα

β − 2s[S ·σ p·σ]αβ
)
, (3.1.48)

y†α̇(~p, s)x†
β̇
(~p, s) = 1

2

(
mδα̇β̇ + 2s[S ·σ p·σ]α̇β̇

)
. (3.1.49)

By taking the hermitian conjugate of the above results, one obtains an equivalent set of formulae,

x†α̇(~p, s)xβ(~p, s) = 1
2(p

µ − 2smSµ)σα̇βµ , (3.1.50)

yα(~p, s)y
†
β̇
(~p, s) = 1

2(pµ + 2smSµ)σ
µ

αβ̇
, (3.1.51)

yα(~p, s)x
β(~p, s) = −1

2

(
mδα

β + 2s[S ·σ p·σ]αβ
)
, (3.1.52)

x†α̇(~p, s)y†
β̇
(~p, s) = −1

2

(
mδα̇β̇ − 2s[S ·σ p·σ]α̇β̇

)
. (3.1.53)

For the case of massless spin-1/2 fermions, we must use helicity spinor wave functions. The

corresponding massless projection operators can be obtained directly from the explicit forms for

the two-component spinor wave functions given in eqs. (3.1.37)–(3.1.40):

xα(~p, λ)x
†
β̇
(~p, λ) = (12 − λ)p·σαβ̇ , x†α̇(~p, λ)xβ(~p, λ) = (12 − λ)p·σ

α̇β , (3.1.54)

y†α̇(~p, λ)yβ(~p, λ) = (12 + λ)p·σα̇β , yα(~p, λ)y
†
β̇
(~p, λ) = (12 + λ)p·σαβ̇ , (3.1.55)

xα(~p, λ)y
β(~p, λ) = 0 , yα(~p, λ)x

β(~p, λ) = 0 , (3.1.56)

y†α̇(~p, λ)x†
β̇
(~p, λ) = 0 , x†α̇(~p, λ)y†

β̇
(~p, λ) = 0 . (3.1.57)

25Similar formulae for the products of two-component spinor wave functions are given in ref. [104].
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As a check, one can verify that the above results follow from eqs. (3.1.46)–(3.1.53), by replacing

s with λ, setting mSµ = pµ, and taking the m→ 0 limit at the end of the computation.

Having listed the projection operators for definite spin projection or helicity, we may now

sum over spins to derive the spin sum identities. These arise when computing squared matrix

elements for unpolarized scattering and decay. There are only four basic identities, but for

convenience we list each of them with the two-index height permutations that can occur in

squared amplitudes by following the rules given in this paper. The results can be derived by

inspection of the spin projection operators, since summing over s = ±1
2 simply removes all terms

linear in the spin four-vector Sµ.

∑

s

xα(~p, s)x
†
β̇
(~p, s) = p·σαβ̇ ,

∑

s

x†α̇(~p, s)xβ(~p, s) = p·σα̇β , (3.1.58)

∑

s

y†α̇(~p, s)yβ(~p, s) = p·σα̇β ,
∑

s

yα(~p, s)y
†
β̇
(~p, s) = p·σαβ̇ , (3.1.59)

∑

s

xα(~p, s)y
β(~p, s) = mδα

β ,
∑

s

yα(~p, s)x
β(~p, s) = −mδαβ , (3.1.60)

∑

s

y†α̇(~p, s)x†
β̇
(~p, s) = mδα̇β̇ ,

∑

s

x†α̇(~p, s)y†
β̇
(~p, s) = −mδα̇β̇ . (3.1.61)

These results are applicable both to spin sums and helicity sums, and hold for both massive and

massless spin-1/2 fermions.

One can generalize the above massive and massless projection operators by considering

products of two-component spinor wave functions, where the spin or helicity of each spinor can

be different. These are the Bouchiat-Michel formulae [112], which are derived in Appendix H.3.

3.2 Fermion mass diagonalization in a general theory

Consider a collection of free anticommuting two-component spin-1/2 fields, ξ̂αi(x), which trans-

form as (12 , 0) fields under the Lorentz group. Here, α is the spinor index, and i labels the

distinct fields of the collection. The free-field Lagrangian is given by (e.g., see ref. [5]):

L = iξ̂†iσµ∂µξ̂i − 1
2M

ij ξ̂iξ̂j − 1
2Mij ξ̂

†iξ̂†j , (3.2.1)

where

Mij ≡ (M ij)∗. (3.2.2)

Note thatM is a complex symmetric matrix, since the product of anticommuting two-component

fields satisfies ξ̂iξ̂j = ξ̂j ξ̂i [with the spinor contraction rule according to eq. (2.35)].

In eq. (3.2.1), we have employed the U(N)-covariant tensor calculus [44, 145] for “flavor-

tensors” labeled by the flavor indices i and j. Each left-handed (12 , 0) fermion always has an

index with the opposite height of the corresponding right-handed (0, 12) fermion. Raised indices

can only be contracted with lowered indices and vice versa. Flipping the heights of all flavor
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indices of an object corresponds to complex conjugation, as in eq. (3.2.2). In particular, we

generalize eq. (2.17) as follows:26

ψ† i
α̇ ≡ (ψαi)

† . (3.2.3)

If M = 0, then the free-field Lagrangian is invariant under a global U(N) symmetry. That is,

for a unitary matrix U , with matrix elements Ui
j, and its hermitian conjugate defined by:

(U †)i
j = (Uj

i)∗ ≡ U ji , (3.2.4)

with Ui
k(U †)k

j = δji , the massless free-field Lagrangian is invariant under the transformations:

ξ̂i −→ Ui
j ξ̂j , ξ̂†i −→ U ij ξ̂

†j . (3.2.5)

For M 6= 0, eq. (3.2.1) remains formally invariant under the global U(N)-symmetry if M acts

as a spurion field [146] with the appropriate tensorial transformation law, M ij −→ U ikU
j
ℓM

kℓ.

Expressions consisting of flavor-vectors and second-rank flavor-tensors have natural inter-

pretations as products of vectors and matrices. As a result, the flavor indices can be suppressed,

and the resulting expressions can be written in an index-free matrix notation. To accomplish

this, one must first assign a particular flavor index structure to the matrices that will appear in

the index-free expression. For example, given the second-rank flavor-tensors introduced above,

we define the matrix elements of M to be M ij and the matrix elements of U to be Ui
j. Note

that (U †)i
j has the same flavor-index structure as U .27

As a simple example, in an index-free notation eq. (3.2.5) reads: ξ̂ −→ Uξ̂ and ξ̂† −→ ξ̂†U †.

A slightly more complicated example is exhibited below:

U ikM
kℓ = (U †)k

iMkℓ = (U∗M)iℓ , (3.2.6)

where we have used (U †)T = U∗ in obtaining the final result. That is, in matrix notation with

suppressed indices, U ikM
kℓ corresponds to the matrix U∗M . Thus, in an index-free notation,

the tensorial transformation law for the spurion field M is given by M −→ U∗MU †.

We can diagonalize the mass matrix M and rewrite the Lagrangian in terms of mass eigen-

states ξαi and (real non-negative) masses mi. To do this, we introduce a unitary matrix Ω,

ξ̂i = Ωi
kξk , (3.2.7)

26In the case at hand, we have more specifically chosen all of the left-handed fermions to have lowered flavor
indices, which implies that all of the right-handed fermions have raised flavor indices. However, in cases where
a subset of left-handed fermions transform according to some representation R of a (global) symmetry and a
different subset of left-handed fermions transform according to the conjugate representation R∗, it is often more
convenient to employ a raised flavor index for the latter subset of left-handed fields.

27The reader should not be tempted to substitute U† for U in eq. (3.2.4), as the resulting flavor-index structure
for U and U† would then disagree with the original flavor-index assignments.
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and demand that M ijΩi
kΩj

ℓ = mkδ
kℓ (no sum over k), where the mk are real and non-negative.

Equivalently, in matrix notation with suppressed indices, ξ̂ = Ωξ and28

ΩTM Ω = m = diag(m1,m2, . . .). (3.2.8)

This is the Takagi diagonalization [111, 147] of an arbitrary complex symmetric matrix, which

is discussed in more detail in Appendix D.2. To compute the values of the diagonal elements

of m, note that

Ω†M †MΩ = m2 . (3.2.9)

Indeed M †M is hermitian and thus it can be diagonalized by a unitary matrix. Hence, the

elements of the diagonal matrix m are the non-negative square roots of the corresponding

eigenvalues of M †M . However, in cases where M †M has degenerate eigenvalues, eq. (3.2.9)

cannot be employed to determine the unitary matrix Ω that satisfies eq. (3.2.8). A more general

technique for determining Ω that works in all cases is given in Appendix D.2.

In terms of the mass eigenstates,

L = iξ†iσµ∂µξi − 1
2mi(ξiξi + ξ†iξ†i) , (3.2.10)

where the sum over i is implicit. If the mi 6= 0 are non-degenerate, then the corresponding field

ξi describes a neutral Majorana fermion consisting of two on-shell real degrees of freedom. The

case of mass degeneracies will be treated explicitly below. If mi = 0, then we shall denote the

corresponding field ξi as a massless Weyl fermion [15].

Each ξαi can now be expanded in a Fourier series, exactly as in eq. (3.1.3):

ξαi(x) =
∑

s

∫
d3~p

(2π)3/2(2Eip)1/2

[
xα(~p, s)ai(~p, s)e

−ip·x + yα(~p, s)a
†
i (~p, s)e

ip·x
]
, (3.2.11)

where Eip ≡ (|~p|2 + m2
i )

1/2, and the creation and annihilation operators, a†i and ai satisfy

anticommutation relations:

{ai(~p, s), a†j(~p ′, s′)} = δ3(~p− ~p ′)δss′δij . (3.2.12)

We employ covariant normalization of the one-particle states, i.e., we act with one creation

operator on the vacuum with the following convention

|~p, i, s〉 ≡ (2π)3/2(2Eip)
1/2a†i (~p, s) |0〉 , (3.2.13)

so that
〈
~p, i, s | ~p ′, j, s′

〉
= (2π)3(2Eip)δ

3(~p − ~p ′)δijδss′ .

28In general, the mi are not the eigenvalues of M . Rather, they are the singular values of the matrix M , which
are defined to be the non-negative square roots of the eigenvalues of M†M . See Appendix D for further details.
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In the case of two mass-degenerate massive fermion fields, m1 = m2 6= 0, eq. (3.2.10)

possesses a global internal O(2) flavor symmetry, ξi → Oijξj (i = 1, 2), where OTO = 12×2.

Corresponding to this symmetry is a conserved hermitian Noether current:

Jµ = i(ξ†1σµξ2 − ξ†2σµξ1) , (3.2.14)

with a corresponding conserved charge, Q =
∫
J0d3x. In the ξ1–ξ2 basis, the Noether current is

off-diagonal. However, it is convenient to define a new basis of fields:

χ ≡ 1√
2
(ξ1 + iξ2) , η ≡ 1√

2
(ξ1 − iξ2) . (3.2.15)

With respect to the χ–η basis, the Noether current is diagonal:

Jµ = χ†σµχ− η†σµη . (3.2.16)

That is, the fermions χ and η are eigenstates of the charge operator Q with corresponding

eigenvalues ±1. In terms of the fermion fields of definite charge, the free-field fermion Lagrangian

[eq. (3.2.10) with i = 1, 2 and m1 = m2 ≡ m] is given by [16]:29

L = iχ†σµ∂µχ+ iη†σµ∂µη −m(χη + χ†η†) . (3.2.17)

On-shell, χ and η satisfy the free-field Dirac equations:

i σµ∂µχ−mη† = 0 , i σµ∂µη −mχ† = 0 . (3.2.18)

In the χ–η basis, the global internal SO(2) symmetry (which is continuously connected to the

identity) is realized as the U(1) symmetry χ → eiθχ and η → e−iθη, where θ is the rotation

angle that defines the SO(2) rotation matrix.

Together, χ and η† constitute a single Dirac fermion. We can then write:

χα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
xα(~p, s)a(~p, s)e

−ip·x + yα(~p, s)b
†(~p, s)eip·x

]
, (3.2.19)

ηα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)1/2

[
xα(~p, s)b(~p, s)e

−ip·x + yα(~p, s)a
†(~p, s)eip·x

]
, (3.2.20)

where Ep ≡ (|~p|2 + m2)1/2, the creation and annihilation operators, a†, b†, a and b satisfy

anticommutation relations:

{a(~p, s), a†(~p ′, s′)} = {b(~p, s), b†(~p ′, s′)} = δ3(~p− ~p ′)δs,s′ , (3.2.21)

29Although the fermion mass matrix is not diagonal in the χ–η basis, this is not an obstacle to the subsequent
analysis, as one only needs a diagonal squared-mass matrix,M†M , to ensure that the denominators of propagators
are diagonal. Eq. (3.2.15) provides the explicit Takagi diagonalization of the Dirac fermion matrix ( 0 1

1 0 ). See
Appendix D.3 for the mathematical interpretation of this special case.
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and all other anticommutators vanish. We now must distinguish between two types of one-

particle states, which we can call fermion (F ) and antifermion (F ):

|~p, s;F 〉 ≡ (2π)3/2(2Ep)
1/2a†(~p, s) |0〉 ,

∣∣~p, s;F
〉
≡ (2π)3/2(2Ep)

1/2b†(~p, s) |0〉 . (3.2.22)

Note that both η(x) and χ†(x) can create |~p, s;F 〉 from the vacuum, while η†(x) and χ(x) can

create
∣∣~p, s;F

〉
. The one-particle wave functions are given by:

〈0|χα(x) |~p, s;F 〉 = xα(~p, s)e
−ip·x , 〈0| η†α̇(x) |~p, s;F 〉 = y†α̇(~p, s)e

−ip·x , (3.2.23)

〈F ; ~p, s| ηα(x) |0〉 = yα(~p, s)e
ip·x , 〈F ; ~p, s|χ†

α̇(x) |0〉 = x†α̇(~p, s)e
ip·x , (3.2.24)

〈0| ηα(x)
∣∣~p, s;F

〉
= xα(~p, s)e

−ip·x , 〈0|χ†
α̇(x)

∣∣~p, s;F
〉
= y†α̇(~p, s)e

−ip·x , (3.2.25)
〈
F ; ~p, s

∣∣χα(x) |0〉 = yα(~p, s)e
ip·x ,

〈
F ; ~p, s

∣∣ η†α̇(x) |0〉 = x†α̇(~p, s)e
ip·x , (3.2.26)

and the eight other single-particle matrix elements vanish.

More generally, consider a collection of free anticommuting charged Dirac fermions, which

can be represented by pairs of two-component fields χ̂αi(x), η̂
i
α(x). These fields transform in

(possibly reducible) representations of the unbroken symmetry group that are conjugates of each

other. This accounts for the opposite flavor index heights of χ̂i and η̂i [cf. footnote 26]. The

free-field Lagrangian is given by

L = iχ̂†iσµ∂µχ̂i + iη̂†iσ
µ∂µη̂

i −M i
jχ̂iη̂

j −Mi
jχ̂†iη̂†j , (3.2.27)

where M is an arbitrary complex matrix with matrix elements M i
j, and

Mi
j ≡ (M i

j)
∗ . (3.2.28)

If M = 0, then the free-field Lagrangian is invariant under a global U(N)×U(N) symmetry.

That is, for a pair of unitary matrices UL and UR, with matrix elements given respectively by

(UL)i
j and (UR)

i
j , and the corresponding hermitian conjugates defined by:

(U †
L)j

i = [(UL)i
j ]∗ ≡ (UL)

i
j , (U †

R)
j
i = [(UR)

i
j]
∗ ≡ (UR)i

j , (3.2.29)

the massless free-field Lagrangian is invariant under the transformations:

χ̂i −→ (UL)i
jχ̂j , χ̂†i −→ (UL)

i
jχ̂

†j , η̂i −→ (UR)
i
j η̂
j , η̂†i −→ (UR)i

j η̂†j . (3.2.30)

ForM 6= 0, eq. (3.2.27) remains formally invariant under the U(N)×U(N) symmetry ifM acts as

a spurion field [146] with the appropriate tensorial transformation law,M i
j → (UL)

i
k(UR)j

ℓMk
ℓ

(or equivalently, in an index-free matrix notation with suppressed flavor indices,M −→ U∗
LMU †

R).

In order to diagonalize the mass matrix, we introduce the mass eigenstates χi and η
i and

unitary matrices L and R, with matrix elements given respectively by Li
k and Rik, such that

χ̂i = Li
kχk , η̂i = Rikη

k , (3.2.31)
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and demand that M i
jLi

kRjℓ = mkδ
k
ℓ (no sum over k), where the mk are real and non-negative.

Equivalently, in matrix notation with suppressed indices, χ̂ = Lχ , η̂ = Rη and

LTMR = m = diag(m1,m2, . . .), (3.2.32)

with the mi real and non-negative (cf. footnote 28). The singular value decomposition of linear

algebra, discussed more fully in Appendix D.1, states that for any complex matrix M , unitary

matrices L and R exist such that eq. (3.2.32) is satisfied. It then follows that:

LT(MM †)L∗ = R†(M †M)R = m2. (3.2.33)

That is, sinceMM † andM †M are both hermitian, they can be diagonalized by unitary matrices.

The diagonal elements of m are therefore the non-negative square roots of the corresponding

eigenvalues of MM † (or equivalently, M †M). In terms of the mass eigenstates,

L = iχ†iσµ∂µχi + iη†i σ
µ∂µη

i −mi(χiη
i + χ†iη†i ) . (3.2.34)

The mass matrix now consists of 2 × 2 blocks
(

0 mi
mi 0

)
along the diagonal. More importantly,

the squared-mass matrix is diagonal with doubly degenerate entries m2
i that will appear in the

denominators of the propagators of the theory. For mi 6= 0, each χi–η
i pair describes a charged

Dirac fermion consisting of four on-shell real degrees of freedom.30 In addition, eq. (3.2.34)

yields an even number of massless Weyl fermions.

Given an arbitrary collection of two-component left-handed (12 , 0) fermions, the distinction

between Majorana and Dirac fermions depends on whether the Lagrangian is invariant under a

global (or local) continuous symmetry group G, and the corresponding multiplet structure of the

fermion fields [148]. If no such continuous symmetry exist, then the fermion mass eigenstates

will consist of Majorana fermions. If the Lagrangian is invariant under a symmetry group G,

then the collection of two-component fermions will break up into a sum of multiplets that

transform irreducibly under G. As described in Appendix E, a representation R can be either

a real, pseudo-real, or complex representation of G. If a multiplet transforms under a real

representation ofG, then the corresponding fermion mass eigenstates are Majorana fermions.31 If

a multiplet transforms under a complex representation ofG, then the corresponding fermion mass

eigenstates are Dirac fermions. In particular [as noted above eq. (3.2.27)], if the χi transform

under the representation R, then the ηi transform under the conjugate representation R∗.

30Of course, one could always choose instead to treat the Dirac fermions in a non-charge-eigenstate basis
with a fully diagonalized mass matrix, as in eq. (3.2.10). Inverting eq. (3.2.15) for each Dirac fermion yields
ξ2i−1 = (χi + ηi)/

√
2 and ξ2i = i(ηi − χi)/

√
2. However, it is rarely, if ever, convenient to do so; practical

calculations only require that the squared-mass matrix M†M is diagonal, and it is of course more convenient to
employ fields that carry well-defined charges.

31This is a slight generalization of the more restrictive definition that requires Majorana fermions to transform
trivially under the group G. Gluinos, which transform under the (real) adjoint representation of the color SU(3)
group, are Majorana fermions according to our more general definition.
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The case where a multiplet of two-component left-handed fermions transform under a

pseudo-real representation of G has not been explicitly treated above. The simplest exam-

ple of this kind is a model of 2n multiplets (or “flavors”) of two-component SU(2)-doublet32

fermions, ψ̂ia (where i = 1, 2, . . . , 2n labels the flavor index and a labels the SU(2) doublet

index). The free-field Lagrangian is given by:

L = iψ̂†iaσµ∂µψ̂ia − 1
2

(
M ijǫabψ̂iaψ̂jb + h.c.

)
, (3.2.35)

where ǫab is the antisymmetric SU(2)-invariant tensor, defined such that ǫ12 = −ǫ21 = +1. As

ǫabψ̂iaψ̂jb is antisymmetric under the interchange of flavor indices i and j, it follows that M is

a complex antisymmetric matrix. To identify the fermion mass eigenstates ψja, we introduce a

unitary matrix U (with matrix elements Ui
j) such that ψ̂ia = Ui

jψja and demand that:

UTMU = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)}
, (3.2.36)

where N is written in block-diagonal form consisting of 2×2 matrix blocks appearing along the

diagonal, and the mj are real and non-negative. Eq. (3.2.36) corresponds to the reduction of a

complex antisymmetric matrix to its real normal form [149], which is discussed in more detail

in Appendix D.4. In order to compute the mk, we first note that

U †M †MU = diag(m2
1 , m

2
1 , m

2
2 , m

2
2 , . . . , m

2
n , m

2
n) . (3.2.37)

Hence, the mj are the non-negative square roots of the corresponding eigenvalues of M †M .

Since the dimension of the doublet representation of SU(2) provides an additional degeneracy

factor of 2, eq. (3.2.37) implies that the mass spectrum consists of 2n pairs of mass-degenerate

two-component fermions, which are equivalent to 2n Dirac fermions. In particular,

L =
2n∑

i=1

iψ†iaσµ∂µψia −
n∑

i=1

(
miǫ

abψ2i−1, aψ2i, b + h.c.
)
. (3.2.38)

In the general case of a pseudo-real representation R (of dimension dR), the SU(2)-invariant

ǫ-tensor is replaced by a more general dR × dR unitary antisymmetric matrix, C [defined in

eq. (E.1.9)]. Thus, the analysis above can be repeated virtually unchanged. By defining

χia ≡ ψ2i−1, a , ηia ≡ Cabψ2i, b , i = 1, 2, . . . , n ; a = 1, 2, . . . , dR , (3.2.39)

with an implicit sum over the repeated index b, the resulting Lagrangian given by

L =

n∑

i=1

iχ†iaσµ∂µχia + iη†iaσ
µ∂µη

ia −mi

(
χiaη

ia + χ†iaη†ia

)
, (3.2.40)

32The doublet representation of SU(2) is pseudo-real.
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describes a free field theory of ndR Dirac fermions [cf. eq. (3.2.34)]. Therefore, if a multiplet of

two-component left-handed fermions transforms under a pseudo-real representation of G, then

the corresponding fermion mass eigenstates are Dirac fermions [148]. If eq. (3.2.35) contains

an odd number of pseudo-real fermion multiplets, then the (antisymmetric) mass matrix M is

odd-dimensional and thus has an odd number of zero eigenvalues [according to eq. (D.4.1)]. But

as dR must be even, it follows that the pseudo-real fermion multiplet contains an even number

of massless Weyl fermions.

In conclusion, the mass diagonalization procedure of an arbitrary field theory of fermions

yields (in general) a set of massless Weyl fermions, a set of massive neutral Majorana fermions

[as in eq. (3.2.10)], and a set of massive charged Dirac fermions [as in eq. (3.2.34)]. The Feynman

rules for these mass eigenstate two-component fermion fields are given in Section 4.

For completeness, we review the squared-mass matrix diagonalization procedure for scalar

fields. First, consider a collection of free commuting real spin-0 fields, ϕ̂i(x), where the flavor

index i labels the distinct scalar fields of the collection. The free-field Lagrangian is given by33

L = 1
2∂µϕ̂i∂

µϕ̂i − 1
2M

2
ijϕ̂iϕ̂j , (3.2.41)

where M2 is a real symmetric matrix. We diagonalize the scalar squared-mass matrix by

introducing mass eigenstates ϕi and the orthogonal matrix Q such that ϕ̂i = Qijϕj , with

M2
ijQikQjℓ = m2

kδkℓ (no sum over k). In matrix form,

QTM2Q = m2 = diag(m2
1,m

2
2, . . .) , (3.2.42)

where the squared-mass eigenvalues m2
k are real.34 This is the standard diagonalization problem

for a real symmetric matrix.

Next, consider a collection of free commuting complex spin-0 fields, Φ̂i(x). For complex

fields, we follow the conventions for flavor indices enunciated below eq. (3.2.2) [e.g. Φ̂i = (Φ̂i)
†].

The free-field Lagrangian is given by

L = ∂µΦ̂
i∂µΦ̂i − (M2)ijΦ̂iΦ̂

j , (3.2.43)

where M2 is an hermitian matrix [i.e., (M2)ij = (M2)j
i in the notation of eq. (3.2.29)].

We diagonalize the scalar squared-mass matrix by introducing mass eigenstates Φi and the

unitary matrix W such that Φ̂i = Wi
kΦk (and Φ̂i = W i

kΦ
k), with (M2)ijWi

kW j
ℓ = m2

kδ
k
ℓ (no

sum over k). In matrix form,

W †M2W = m2 = diag(m2
1,m

2
2, . . .) . (3.2.44)

where the squared-mass eigenvalues m2
k are real (cf. footnote 34). This is the standard diago-

nalization problem for an hermitian matrix.

33Since the scalar fields are real, there is no need to distinguish between raised and lowered flavor indices.
34If the vacuum corresponds to a local minimum (or flat direction) of the scalar potential, then the squared-mass

eigenvalues of M2 are real and non-negative.
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4 Feynman rules with two-component spinors

In order to systematically perform perturbative calculations using two-component spinors, we

present the basic Feynman rules. The Feynman rules for the Standard Model (and its see-

saw extension) and the MSSM (including possible R-parity-violating interactions) are given in

Appendices J, K and L. Feynman rules for two-component spinors have also been treated in

refs. [49, 106,109].

4.1 External fermion and boson rules

Consider a general theory, for which we may assume that the mass matrix for fermions has been

diagonalized as discussed in Section 3.2. The rules for assigning two-component external state

spinors are then as follows:

• For an initial state (incoming) left-handed (12 , 0) fermion: x

• For an initial state (incoming) right-handed (0, 12) fermion: y†

• For a final state (outgoing) left-handed (12 , 0) fermion: x†

• For a final state (outgoing) right-handed (0, 12 ) fermion: y

where we have suppressed the momentum and spin arguments of the spinor wave functions.

These rules are summarized in the mnemonic diagram of Fig. 4.1.1.

x x†

y† y

L (12 , 0) fermion

R (0, 12) fermion

Initial State Final State

Figure 4.1.1: The external wave function spinors should be assigned as indicated here, for
initial state and final state left-handed (12 , 0) and right-handed (0, 12 ) fermions.

In general, the two-component external state fermion wave functions are distinguished by

their Lorentz group transformation properties, rather than by their particle or antiparticle status

as in four-component Feynman rules. This helps to explain why two-component notation is

especially convenient for (i) theories with Majorana particles, in which there is no fundamental
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distinction between particles and antiparticles, and (ii) theories like the Standard Model and

MSSM in which the left and right-handed fermions transform under different representations of

the gauge group and (iii) problems with polarized particle beams.

In contrast to four-component Feynman rules (given in Appendix G.5), the direction of

the arrows do not correspond to the flow of charge or fermion number. The two-component

Feynman rules for external fermion lines simply correspond to the formulae for the one-particle

wave functions exhibited in eqs. (3.1.7) and (3.1.8) [with the convention that |~p, s〉 is an initial

state fermion and 〈~p, s| is a final state fermion]. In particular, the arrows indicate the spinor

index structure, with fields of undotted indices flowing into any vertex and fields of dotted

indices flowing out of any vertex.

The rules above apply to any mass eigenstate two-component fermion external wave func-

tions. It is noteworthy that the same rules apply for the two-component fermions governed by

the Lagrangians of eq. (3.2.10) [Majorana] and eqs. (3.2.34) or (3.2.40) [Dirac].

The corresponding rules for external boson lines are well-known (see, e.g ref. [114]).

• For an initial state (incoming) or final state (outgoing) spin-0 boson : 1

• For an initial state (incoming) spin-1 boson of momentum ~k and helicity λ : εµ(~k , λ)

• For a final state (outgoing) spin-1 boson of momentum ~k and helicity λ : εµ(~k , λ)∗

The explicit form of the helicity ±1 (massless or massive) spin-1 polarization vector εµ is given

in eq. (I.2.41). The helicity zero massive spin-1 polarization vector is given in eq. (I.2.43).

4.2 Propagators

Next we turn to the subject of fermion propagators for two-component fermions. A derivation of

the two-component fermion propagators using path integral techniques is given in Appendix F.

Here, we will follow the more elementary approach typically given in an initial textbook treat-

ment of quantum field theory.

Fermion propagators are the Fourier transforms of the free-field vacuum expectation values

of time-ordered products of two fermion fields. They are obtained by inserting the free-field

expansion of the two-component fermion field and evaluating the spin sums using the formulae

given in eqs. (3.1.58) and (3.1.61). For the case of a single neutral two-component fermion field
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(a) (b)

p

αβ̇

p

β α̇

ip·σαβ̇
p2 −m2

ip·σα̇β
p2 −m2

(c) (d)
β̇ α̇ αβ

im

p2 −m2
δα̇β̇

im

p2 −m2
δα
β

Figure 4.2.1: Feynman rules for propagator lines of a neutral two-component fermion with
mass m. (For simplicity, the +iǫ terms in the denominators are omitted in all propagator rules.)

ξ(x) of mass m, eqs. (3.2.11) and (3.2.12) yield [49,106,108,109,143,150]:

〈0|Tξα(x)ξ†β̇(y) |0〉FT =
i

p2 −m2 + iǫ

∑

s

xα(~p, s)x
†
β̇
(~p, s) =

i

p2 −m2 + iǫ
p·σαβ̇ , (4.2.1)

〈0|Tξ†α̇(x)ξβ(y) |0〉FT =
i

p2 −m2 + iǫ

∑

s

y†α̇(~p, s)yβ(~p, s) =
i

p2 −m2 + iǫ
p·σα̇β , (4.2.2)

〈0|Tξ†α̇(x)ξ†
β̇
(y) |0〉FT =

i

p2 −m2 + iǫ

∑

s

y†α̇(~p, s)x†
β̇
(~p, s) =

i

p2 −m2 + iǫ
mδα̇β̇ , (4.2.3)

〈0|Tξα(x)ξβ(y) |0〉FT =
i

p2 −m2 + iǫ

∑

s

xα(~p, s)y
β(~p, s) =

i

p2 −m2 + iǫ
mδα

β , (4.2.4)

where FT indicates the Fourier transform from position to momentum space.35 These results

have a clear diagrammatic representation, as shown in Fig. 4.2.1. Note that the direction of the

momentum flow pµ here is determined by the creation operator that appears in the evaluation

of the free-field propagator. Arrows on fermion lines always run away from dotted indices at a

vertex and toward undotted indices at a vertex.

There are clearly two types of fermion propagators. The first type preserves the direction of

arrows, so it has one dotted and one undotted index. For this type of propagator, it is convenient

to establish a convention where pµ in the diagram is defined to be the momentum flowing in the

direction of the arrow on the fermion propagator. With this convention, the two rules above for

propagators of the first type can be summarized by one rule, as shown in Fig. 4.2.2. Here the

choice of the σ or the σ version of the rule is uniquely determined by the height of the indices

35The Fourier transform of a translationally invariant function f(x, y) ≡ f(x− y) is given by

f(x, y) =

∫
d4p

(2π)4
f̂(p) e−ip·(x−y) , where f̂(p) =

∫
d4x f(x)eip·x .

In the notation of the text above, f(x, y)FT ≡ f̂(p).
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β̇ α

p ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

Figure 4.2.2: This rule summarizes the results of both Figs. 4.2.1(a) and (b) for a neutral
two-component fermion with mass m.

on the vertex to which the propagator is connected.36 These heights should always be chosen

so that they are contracted as in eq. (2.35). It should be noted that in diagrams (a) and (b)

of Fig. 4.2.1 as drawn, the indices on the σ and σ read from right to left. In particular, the

Feynman rules for the propagator can be employed with the spinor indices suppressed provided

that the arrow-preserving propagator lines are traversed in the direction parallel [antiparallel]

to the arrowed line segment for the σ [σ] version of the rule, respectively.

The second type of propagator shown in diagrams (c) and (d) of Fig. 4.2.1 does not preserve

the direction of arrows, and corresponds to an odd number of mass insertions. The indices on δα̇β̇

and δα
β are staggered as shown to indicate that α̇ and α are to be contracted with expressions

to the left, while β̇ and β are to be contracted with expressions to the right, in accord with

eq. (2.35).37

β α
× ×

α̇β̇

−imδαβ −imδα̇β̇

Figure 4.2.3: Fermion mass insertions (indicated by the crosses) can be treated as a type of
interaction vertex, using the Feynman rules shown here.

Starting with massless fermion propagators, one can also derive the massive fermion propa-

gators by employing mass insertions as interaction vertices, as shown in Fig. 4.2.3. By summing

up an infinite chain of such mass insertions between massless fermion propagators, one can

reproduce the massive fermion propagators of both types.

The above results for the propagator of a Majorana fermion can be generalized to a mul-

tiplet of mass eigenstate Majorana fermions, ξαa(x) [such as a color octet of gluinos], which

transforms as a real representation R of a (gauge or flavor) group G (where a = 1, 2, . . . , dR for

a representation of dimension dR). In this case, the Feynman graphs given in Figs. 4.2.1–4.2.3

are modified simply by specifying a group index a and b at either end of the propagator line. The

corresponding Feynman rules then includes an additional Kronecker delta factor in the group

36The second form of the rule in Fig. 4.2.2 arises when one flips diagram (b) of Fig. 4.2.1 around by a 180◦

rotation (about an axis perpendicular to the plane of the diagram), and then relabels p→ −p, α̇→ β̇ and β → α.
37As in Fig. 4.2.2, alternative and equivalent versions of the rules corresponding to diagrams (c) and (d) of

Fig. 4.2.1 can be given for which the indices on the Kronecker deltas are staggered as δβ̇ α̇ and δβ
α. These versions

correspond to flipping the two respective diagrams by 180◦ and relabeling the indices α̇→ β̇ and β → α.
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indices. In particular, if we associate the index a with the spinor indices α, α̇ and the index b

with the spinor indices β, β̇, then the rules exhibited in Fig. 4.2.1(a) and (b) would include the

following Kronecker delta factors:

(a) δba , (b) δab , (4.2.5)

and the factors of m in the rules exhibited in Fig. 4.2.1(c) and (d) would be replaced by

(c) δacm
cdδbd = maδ

ab , (d) δcamcdδ
d
b = maδab , (4.2.6)

(with no sum over the repeated index a), where mcd and mcd ≡ mcd are diagonal matrices with

real non-negative diagonal elements mc. Here, we have introduced the separate symbol mcd in

order to maintain the convention that two repeated group indices are summed when one index

is raised and one index is lowered. Of course, if the Lagrangian is invariant under the symmetry

group G, then a multiplet of Majorana fermions corresponding to an irreducible representation

R has a common mass m = ma.

It is convenient to treat separately the case of charged massive fermions. Consider a charged

Dirac fermion of mass m, which is described by a pair of two-component fields χ(x) and η(x)

[cf. eq. (3.2.17)]. Using the free-field expansions [eqs. (3.2.19) and (3.2.20)] and the spin sums

[eqs. (3.1.58)–(3.1.61)], the two-component free-field propagators are obtained:

〈0|Tχα(x)χ†
β̇
(y) |0〉FT = 〈0|Tηα(x)η†β̇(y) |0〉FT =

i

p2 −m2
p·σαβ̇ , (4.2.7)

〈0|Tχ†α̇(x)χβ(y) |0〉FT = 〈0|Tη†α̇(x)ηβ(y) |0〉FT =
i

p2 −m2
p·σα̇β , (4.2.8)

〈0|Tχα(x)ηβ(y) |0〉FT = 〈0|Tηα(x)χβ(y) |0〉FT =
i

p2 −m2
mδα

β , (4.2.9)

〈0|Tχ†α̇(x)η†
β̇
(y) |0〉FT = 〈0|Tη†α̇(x)χ†

β̇
(y) |0〉FT =

i

p2 −m2
mδα̇β̇ . (4.2.10)

For all other combinations of fermion bilinears, the corresponding two-point functions vanish.

These results again have a simple diagrammatic representation, as shown in Fig. 4.2.4. Note that

for Dirac fermions, the propagators with opposing arrows (proportional to a mass) necessarily

change the identity (χ or η) of the two-component fermion, while the single-arrow propagators

are diagonal in the fields. In processes involving such a charged fermion, one must of course

distinguish between the χ and η fields.

The above results for the propagator of a Dirac fermion can be generalized to a multiplet of

mass eigenstate Dirac fermions, χαi, η
i
α
, which transform under a (gauge or flavor) group G. In

this case, the Feynman graphs given in Fig. 4.2.4 are modified simply by specifying a group index

i and j at either end of the propagator line. The corresponding Feynman rules then include an

additional Kronecker delta factor in the group indices. In particular, if we associate the group
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(a) (b)χ χ ηη

p

αβ̇ β̇ α

p

ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

χ η ηχ(c) (d)
β̇ α̇ αβ

im

p2 −m2
δα̇β̇

im

p2 −m2
δα
β

Figure 4.2.4: Feynman rules for propagator lines of a pair of charged two-component fermions
with a Dirac mass m. As in Fig. 4.2.2, the direction of the momentum is taken to flow from the
dotted to the undotted index in diagrams (a) and (b).

index i with the spinor indices α, α̇ and the index j with the spinor indices β, β̇, then the rules

exhibited in Fig. 4.2.4(a) and (b) would include the following Kronecker delta factors:

(a) δji (b) δij , (4.2.11)

and the factors of m in the rules exhibited in Fig. 4.2.4(c) and (d) would be replaced by

(c) δℓimℓ
nδjn = miδ

j
i , (d) δiℓm

ℓ
nδ
n
j = miδ

i
j , (4.2.12)

where mℓ
n and mℓ

n ≡ mℓ
n are diagonal matrices with real non-negative diagonal elements mℓ,

and there is no sum over the repeated index i. (Here, we have introduced the separate symbol

mℓ
n in order to maintain the convention that two repeated group indices are summed when one

index is raised and one index is lowered.) As before, if the Lagrangian is invariant under the

symmetry group G, then an irreducible multiplet of Dirac fermions has a common mass m = mi.

For completeness, we exhibit in Fig. 4.2.5 the Feynman rules for the propagators of the

(neutral or charged) scalar boson and gauge boson in the Rξ gauge, with gauge parameter ξ [151].

i

p2 −m2

µ, a ν, b

−i
p2 −m2

[
gµν − (1− ξ) pµpν

p2 − ξm2

]
δab

Figure 4.2.5: Feynman rules for the (neutral or charged) scalar and gauge boson propagators,
in the Rξ gauge, where p

µ is the propagating four-momentum. In the gauge boson propagator,
ξ = 1 defines the ’t Hooft-Feynman gauge, ξ = 0 defines the Landau gauge, and ξ →∞ defines
the unitary gauge. For the propagation of a non-abelian gauge boson, one must also specify the
adjoint representation indices a, b.
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4.3 Fermion interactions with bosons

We next discuss the interaction vertices for fermions with bosons. Renormalizable Lorentz-

invariant interactions involving fermions must consist of bilinears in the fermion fields, which

transform as a Lorentz scalar or vector, coupled to the appropriate bosonic scalar or vector field

to make an overall Lorentz scalar quantity.

Let us write all of the two-component left-handed (12 , 0) fermions of the theory as ψ̂i, where

i runs over all of the gauge group representation and flavor degrees of freedom. In general, the

(12 , 0)-fermion fields ψ̂i consist of Majorana fermions ξ̂i, and Dirac fermion pairs χ̂i and η̂
i after

mass terms (both explicit and coming from spontaneous symmetry breaking) are taken into

account. Likewise, consider a multiplet of scalar fields φ̂I , where I runs over all of the gauge

group representation and flavor degrees of freedom. In general, the scalar fields φ̂I consist of

real scalar fields ϕ̂I and pairs of complex scalar fields Φ̂I and Φ̂I ≡ (Φ̂I)
†. In matrix form,

ψ̂ ≡



ξ̂
χ̂
η̂


 , φ̂ ≡



ϕ̂

Φ̂

Φ̂†


 . (4.3.1)

By dividing up the fermions into Majorana and Dirac fermions and the spin-zero fields into real

and complex scalars, we are assuming implicitly that some of the indices I and i correspond to

states of a definite (global) U(1)-charge (denoted in the following by qI and qi, respectively).

The most general set of Yukawa interactions of the scalar fields with a pair of fermion fields

is then given by:

Lint = −1
2 Ŷ

Ijkφ̂I ψ̂jψ̂k − 1
2 ŶIjkφ̂

I ψ̂†jψ̂†k , (4.3.2)

where ŶIjk = (Ŷ Ijk)∗. We have suppressed the spinor indices here; the product of two-component

spinors is always performed according to the index convention indicated in eq. (2.35). The

Yukawa Lagrangian [eq. (4.3.2)] must be invariant under:

ξ̂i → ξ̂i , χ̂i → eiqiθχ̂i , η̂i → e−iqiθ η̂i , ϕ̂i → ϕ̂i , Φ̂I → eiqIθΦ̂I , Φ̂I → e−iqIθΦ̂I ,

(4.3.3)

where the qi are the U(1)-charges of the corresponding Dirac fermions and the qI are the U(1)-

charges of the corresponding complex scalars. Consequently, the form of the Ŷ Ijk is constrained:

Ŷ Ijk = 0 , unless qI + qj + qk = 0 . (4.3.4)

Of course, any other conserved symmetries will impose additional selection rules on the Yukawa

couplings Y Ijk.

The hatted fields are the interaction eigenstate fields. However, in general the mass eigen-

states can be different, as discussed in Section 3.2. The computation of matrix elements for

physical processes is more conveniently done in terms of the propagating mass eigenstate fields.
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I

k, β

j, α

−iY Ijkδα
β or − iY Ijkδβ

α(a)

I

k, β̇

j, α̇

−iYIjkδα̇β̇ or − iYIjkδβ̇ α̇(b)

Figure 4.3.1: Feynman rules for Yukawa couplings of scalars to two-component fermions in
a general field theory. The choice of which rule to use depends on how the vertex connects to
the rest of the amplitude. When indices are suppressed, the spinor index part is always just
proportional to the identity matrix.

The mass eigenstate basis ψ is related to the interaction eigenstate basis ψ̂ by a unitary rotation

Ui
j on the flavor indices. In matrix form:

ψ̂ ≡



ξ̂i
χ̂i
η̂i


 = Uψ ≡



Ωi

j 0 0

0 Li
j 0

0 0 Rij






ξj
χj
ηj


 , (4.3.5)

where Ω, L, and R are constructed as described previously in Section 3.2 [see eqs. (3.2.8) and

(3.2.32)]. Likewise, the mass eigenstate basis φ is related to the interaction eigenstate basis φ̂

by a unitary rotation VI
J on the flavor indices. In matrix form,

φ̂ ≡



ϕ̂I

Φ̂I

Φ̂I


 = V φ ≡



QI

J 0 0

0 WI
J 0

0 0 W I
J






ϕJ
ΦJ
ΦJ


 , (4.3.6)

where W I
J = (WI

J)∗, and Q and W are constructed according to eqs. (3.2.42) and (3.2.44).

Thus, we may rewrite eq. (4.3.2) in terms of mass eigenstate fields:

Lint = −1
2Y

IjkφIψjψk − 1
2YIjkφ

Iψ†jψ†k , (4.3.7)

where

Y Ijk = VJ
IUm

jUn
kŶ Jmn . (4.3.8)

Note that eq. (4.3.4) implies that Y Ijk = 0 unless qI + qj + qk = 0. The corresponding Feynman

rules that arise from the Yukawa interaction Lagrangian are shown in Fig. 4.3.1. If the scalar

φI is complex, then one can associate an arrow with the flow of analyticity, which would point

into the vertex in (a) and would point out of the vertex in (b). That is, the arrow on the scalar

line keeps track of the height of the scalar flavor index entering or leaving the vertex.
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In Fig. 4.3.1, two versions are given for each Feynman rule. The choice of which rule to use

is dictated by the height of the indices on the fermion lines that connect to the vertex. These

heights should always be chosen so that they are contracted as in eq. (2.35). However, when all

spinor indices are suppressed, the scalar-fermion-fermion rules will have an identical appearance

for both cases, since they are just proportional to the identity matrix of the 2× 2 spinor space.

To provide a more concrete example of the above results, consider a real neutral scalar field

φ and a (possibly) complex charged scalar field Φ (with U(1)-charge qΦ) that interact with a

multiplet of Majorana fermions ξi and Dirac fermion pairs χj and η
j (with U(1)-charges qj and

−qj, respectively). We assume that all fields are given in the mass eigenstate basis. The Yukawa

interaction Lagrangian is given by:

Lint = −1
2(λ

ijξiξj + λijξ
†iξ†j)φ− κijχiηjΦ+ κi

jχ†iη†jΦ
†

−[(κ1)ijξiηj + (κ2)ijξ
†iχ†j ]Φ− [(κ2)

ijξiχj + (κ1)i
jξ†iη†j ]Φ

† , (4.3.9)

where λ is a complex symmetric matrix, and κ, κ1 and κ2 are complex matrices such that κij = 0

unless qΦ = qj − qi and (κ1)
i
j = (κ2)ij = 0 unless qΦ = qj [flavor index conventions are specified

in eqs. (3.2.2) and (3.2.28)]. The corresponding Feynman rules of Fig. 4.3.1(a) are obtained by

identifying Y Iij = λij , κij , (κ1)
i
j and (κ2)

ij for the undotted fermion vertices φξiξj, Φχiη
j, Φξiη

j

and Φ†ξiχj, respectively.
38 The corresponding Feynman rules of Fig. 4.3.1(b) for the dotted

fermion vertices are governed by the complex-conjugated Yukawa couplings, YIjk ≡ (Y Ijk)∗.

The renormalizable interactions of vector bosons with fermions and scalars arise from gauge

interactions. These interaction terms of the Lagrangian derive from the respective kinetic energy

terms of the fermions and scalars when the derivative is promoted to the covariant derivative:

(Dµ)i
j ≡ δij∂µ + igaA

a
µ(T

a)i
j , (4.3.10)

where the index a labels the real (interaction eigenstate) vector bosons Aµa and is summed over.

The index a runs over the adjoint representation of the gauge group,39 and the (T a)i
j are

hermitian representation matrices of the generators of the Lie algebra of the gauge group acting

on the left-handed fermions (for further details, see Appendix E). For a U(1) gauge group, the

T a are replaced by real numbers corresponding to the U(1) charges of the left-handed (12 , 0)

fermions. There is a separate coupling ga for each simple group or U(1) factor of the gauge

group G.40

38For the Φ†ξiχj vertex, we should reverse the direction of the arrow on the scalar line in Fig. 4.3.1(a) [and
likewise for the corresponding hermitian-conjugated vertex of Fig. 4.3.1(b)], in which case all arrows on the charged
scalar and fermion lines would represent the direction of flow of the conserved U(1)-charge.

39Since the adjoint representation is a real representation, the height of the adjoint index a is not significant.
The choice of a subscript or superscript adjoint index is based solely on typographical considerations.

40That is, the generators T a separate out into distinct classes, each of which is associated with a simple group
or one of the U(1) factors contained in the direct product that defines G. In particular, ga = gb if T

a and T b are
in the same class. If G is simple, then ga = g for all a.
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In the gauge-interaction basis for the left-handed (12 , 0) two-component fermions the corre-

sponding interaction Lagrangian is given by

Lint = −gaAµa ψ̂†i σµ(T
a)i

jψ̂j . (4.3.11)

In the case of spontaneously broken gauge theories, one must diagonalize the vector boson

squared-mass matrix. The form of eq. (4.3.11) still applies where Aaµ are gauge boson fields

of definite mass, although in this case for a fixed value of a, gaT
a [which multiplies Aaµ in

eq. (4.3.11)] is some linear combination of the original gaT
a of the unbroken theory. That is,

the hermitian matrix gauge field (Aµ)i
j ≡ Aaµ(T

a)i
j appearing in eq. (4.3.11) can always be

re-expressed in terms of the physical mass eigenstate gauge boson fields.

If an unbroken U(1) (global or local) symmetry exists, then the physical gauge bosons will

be eigenstates of the conserved U(1)-charge.41 If the U(1) symmetry group is orthogonal to the

gauge group under which the Aµa transform, then all the gauge bosons are neutral with respect to

the U(1)-charge. For example, in the case of the interaction of a gluon with a pair of Majorana

fermion gluinos, the gluon is a gauge boson that transforms under the SU(3) color group, which

is orthogonal to the conserved U(1)EM. That is, gluinos are color octet, electrically neutral

fermions. In contrast, in the case of the interaction of a Z0 with pair of Majorana neutralinos,

U(1)EM is not orthogonal to the electroweak SU(2)×U(1) gauge group. Nevertheless, the Z0-

gauge boson interactions of the neutralinos are allowed as they conserve electric charge.

To obtain the desired Feynman rule, we rewrite eq. (4.3.11) in terms of mass eigenstate

fermion fields. The resulting interaction Lagrangian can be rewritten as

Lint = −Aµaψ†i σµ(G
a)i

jψj , (4.3.13)

where the Aµa are the mass eigenstate gauge fields (of definite U(1)-charge, if relevant), and

(Ga)i
j = gaU

k
i(T

a)k
mUm

j , (4.3.14)

or in matrix form, Ga = gaU
†T aU (no sum over a). For values of a corresponding to the

neutral gauge fields, the Ga are hermitian matrices. The corresponding Feynman rule is shown

in Fig. 4.3.2.

41 In terms of the physical gauge boson fields, AaµT
a consists of a sum over real neutral gauge fields multiplied

by hermitian generators, and complex charged gauge fields multiplied by non-hermitian generators. For example,
in the electroweak Standard Model, G=SU(2)×U(1) with gauge bosons and generators W a

µ and T a = 1
2
τa for

SU(2) and Bµ and Y for U(1), where the τa are the usual Pauli matrices. After diagonalizing the gauge boson
squared-mass matrix [151]:

gW a
µT

a + g′BµY =
g√
2
(W+

µ T
+ +W−

µ T
−) +

g

cos θW

(
T

3 −Q sin2 θW
)
Zµ + eQAµ , (4.3.12)

where Q = T 3 +Y is the generator of the unbroken U(1)EM, T± ≡ T 1 ± iT 2, and e = g sin θW = g′ cos θW . The
massive gauge boson charge-eigenstate fields of the broken theory consist of a charged massive gauge boson pair,
W± ≡ (W 1 ∓ iW 2)/

√
2, a neutral massive gauge boson, Z ≡ W 3 cos θW − B sin θW , and the massless photon,

A ≡W 3 sin θW +B cos θW .
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a, µ
j, β

i, α̇

−i(Ga)ij σα̇βµ or i(Ga)i
j σµβα̇

Figure 4.3.2: The Feynman rules for two-component fermion interactions with gauge bosons.
The choice of which rule to use depends on how the vertex connects to the rest of the amplitude.
The Ga are defined in eq. (4.3.14). The index a runs over both neutral and charged (mass
eigenstate) gauge bosons, consistent with charge conservation at the vertex.

The above treatment of the gauge interactions of (two-component) fermions is general.

Nevertheless, it is useful to consider separately three cases where the gauge bosons couple to

a pair of Majorana fermions, a pair of Dirac fermions, and a fermion pair consisting of one

Majorana and one Dirac fermion.

First, consider the gauge interactions of neutral Majorana fermions. The Majorana fermions

consist of left-handed (12 , 0) interaction eigenstate fermions ξ̂i that transform under a real rep-

resentation of the gauge group. After converting from the interaction eigenstates ξ̂i to the mass

eigenstates ξi using eq. (3.2.7), the Lagrangian for the gauge interactions of Majorana fermions

is given by:

Lint = −Aaµξ†i σµ(Ga)ijξj , (4.3.15)

where the Aaµ are neutral (real) mass eigenstate gauge fields, and

(Ga)i
j = gaΩ

k
i(T

a)k
mΩm

j , (4.3.16)

or in matrix form, Ga = gaΩ
†T aΩ (no sum over a). Note that the Ga are hermitian matrices.

The corresponding Feynman rule takes the same form as the generalized rule shown in Fig. 4.3.2,

with a restricted to values corresponding to the neutral mass eigenstate gauge bosons.

Next, consider the gauge interactions of charged Dirac fermions. The Dirac fermions consist

of pairs of left-handed (12 , 0) interaction eigenstate fermions χ̂i and η̂
i that transform as conjugate

representations of the gauge group (hence the opposite flavor index heights). The fermion mass

matrix couples χ and η type fields as in eq. (3.2.27). In the coupling to the interaction eigenstate

gauge fields, if the (T a)i
j are matrix elements of the hermitian representation matrices of the

generators acting on the χ̂i, then the η̂i transform in the complex conjugate representation with

the corresponding generator matrices −(T a)∗ = −(T a)T, i.e. with matrix elements −(T a)j
i.

Hence, the Lagrangian for the gauge interactions of Dirac fermions can be written in the form:

Lint = −gaAµa χ̂†i σµ(T
a)i

jχ̂j + gaA
µ
a η̂

†
i σµ(T

a)j
iη̂j . (4.3.17)

We now rewrite eq. (4.3.17) in terms of mass eigenstate fermion fields using eq. (3.2.31), and

express the hermitian matrix gauge field Aµ ≡ AµaT a in terms of mass eigenstate gauge fields
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a, µ
β

α̇

−i(GaL)ij σ
α̇β
µ or i(GaL)i

j σµβα̇

χi

χj

(a)

a, µ
β̇

α

i(GaR)i
j σβ̇αµ or −i(GaR)ij σµαβ̇

ηi

ηj

(b)

Figure 4.3.3: The Feynman rules for the interaction of a gauge boson and a pair of Dirac
fermions (each formed by χ and η of the appropriate flavor index). The fermion lines are labeled
by the corresponding two-component left-handed (12 , 0) fermion fields. The matrices GaL and GaR
depend on the group generators for the representation carried by the χi according to eqs. (4.3.19)
and (4.3.20). The index a runs over both neutral and charged (mass eigenstate) gauge bosons,
consistent with charge conservation at the vertex.

(of definite U(1)-charge, if relevant). The resulting interaction Lagrangian is then given by:

Lint = −Aµa
[
χ†i σµ(G

a
L)i

jχj − η†i σµ(GaR)j iηj
]
, (4.3.18)

where AµaGaL and AµaGaR are hermitian matrix-valued gauge fields, with:

(GaL)i
j = gaL

k
i(T

a)k
mLm

j , (4.3.19)

(GaR)j
i = gaR

m
j(T

a)m
kRk

i . (4.3.20)

In matrix form, eqs. (4.3.19) and (4.3.20) read: GaL = gaL
†T aL and GaR = gaR

†T aR (no sum

over a). For values of a corresponding to the neutral gauge fields, GaL and GaR are hermitian

matrices. The corresponding Feynman rules for the gauge interactions of Dirac fermions are

shown in Fig. 4.3.3. Note that χi with its arrow pointing out of the vertex and ηi with its arrow

pointing into the vertex represent the same Dirac fermion.

Finally, consider the interaction of a charged vector boson W (with U(1)-charge qW ) with

a fermion pair consisting of one Majorana and one Dirac fermion. As before, we denote the

Majorana fermion by ξi and the Dirac fermion pair by χj and ηj (with U(1)-charges qj and

−qj, respectively). All fields are assumed to be in the mass eigenstate basis. The interaction

Lagrangian is given by:42

Lint = −Wµ[(G1)j
iχ†jσµξi − (G2)ijξ

†iσµηj ]−W †
µ[(G1)

j
i ξ

†iσµχj − (G2)
ijη†jσ

µξi] , (4.3.21)

where G1 and G2 are arbitrary complex matrices, with (G1)
i
j ≡ [(G1)i

j ]∗ and (G2)
ij ≡ [(G2)ij ]

∗,

such that (G1)j
i = (G2)ij = 0 unless qW = qj. The interactions of eq. (4.3.21) yield the Feynman

42The sign in front ofG2 is conventionally chosen to match the sign of the term proportional toGaR in eq. (4.3.18).
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µ
α

β̇ − i(G1)j
iσβ̇αµ

or

i(G1)j
iσµαβ̇

χj

ξi

(a)

µ
α̇

β
i(G2)ijσ

α̇β
µ

or

− i(G2)ijσµβα̇

ηj

ξi

(b)

µ
α̇

β
− (G1)

j
iσ
α̇β
µ

or

(G1)
j
iσµβα̇

χj

ξi

(c)

µ
α

β̇
i(G2)

ijσβ̇αµ

or

− i(G2)
ijσµαβ̇

ηj

ξi

(d)

Figure 4.3.4: The Feynman rules for the interactions of a charged vector boson (with U(1)-
charge qW ) with a fermion pair consisting of one Majorana fermion ξi and one Dirac fermion
formed by χj and η

j (with corresponding U(1)-charges qj and −qj). The fermion lines are labeled
by the corresponding two-component left-handed (12 , 0) fermion fields. The matrix couplings G1

and G2 are defined in eq. (4.3.21). Note that (G1)j
i = (G2)ij = 0 unless qW = qj. The arrows

indicate the direction of flow of the U(1)-charges of the fermion and boson fields.

rules exhibited in Fig. 4.3.4. Note that rules (c) and (d) are the complex conjugates of rules

(a) and (b), respectively, corresponding to a reversal of the flow of the U(1)-charge through the

interaction vertex.

In Figs. 4.3.2–4.3.4, two versions are given for each of the boson-fermion-fermion Feynman

rules. The correct version to use depends in a unique way on the heights of indices used to

connect each fermion line to the rest of the diagram. For example, the way of writing the

vector-fermion-fermion interaction rule depends on whether we used ψ†iσµψj , or its equivalent

form −ψjσµψ†i, in eq. (4.3.11). Note the different heights of the undotted and dotted spinor

indices that adorn σµ and σµ. The choice of which rule to use is thus dictated by the height of

the indices on the lines that connect to the vertex. These heights should always be chosen so

that they are contracted as in eq. (2.35).

The application of the rules of this subsection will be exhibited in Section 4.5. Many

additional examples involving Standard Model and MSSM processes can be found in Section 6.

4.4 General structure and rules for Feynman graphs

When computing an amplitude for a given process, all possible diagrams should be drawn that

conform with the rules given in Sections 4.1–4.3 for external wave functions, propagators, and

interactions, respectively. Starting from any external wave function spinor (or from any vertex

on a fermion loop), factors corresponding to each propagator and vertex should be written down

from left to right, following the line until it ends at another external state wave function (or at

the original point on the fermion loop). If one starts a fermion line at an x or y external state
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spinor, it should have a raised undotted index in accord with eq. (2.35). Or, if one starts with

an x† or y†, it should have a lowered dotted spinor index. Then, all spinor indices should always

be contracted as in eq. (2.35). If one ends with an x or y external state spinor, it will have a

lowered undotted index, while if one ends with an x† or y† spinor, it will have a raised dotted

index. For arrow-preserving fermion propagators and gauge vertices, the preceding determines

whether the σ or σ rule should be used.

With only a little practice, one can write down amplitudes immediately with all spinor

indices suppressed. In particular, the following must be satisfied:

• For any scattering matrix amplitude, factors of σ and σ must alternate. If one or
more factors of σ and/or σ are present, then x and y must be followed [preceded]
by a σ [σ], and x† and y† must be followed [preceded] by a σ [σ].

(4.4.1)

These requirements automatically dictate whether the σ or σ version of the rule for arrow-

preserving fermion propagators and gauge vertices are employed in any tree-level Feynman

diagram. In loop diagrams, we must add one further requirement that governs the order of the

σ and σ factors as one traverses around the loop.

• Arrow-preserving propagator lines must be traversed in a direction parallel [anti-
parallel] to the arrowed line segment for the σ [σ] version of the propagator rule.43

(4.4.2)

For fermion lines that are not closed loops, this last requirement is realized automatically

provided that the requirements of eq. (4.4.1) are satisfied. However, for closed fermion loops, one

must use the correct fermion propagator corresponding to the direction around the loop one has

chosen to follow in writing down the spinor trace with suppressed indices. For example, having

employed a σ [σ] rule at one vertex attached to the loop, one must then traverse the loop from

that vertex point in a direction parallel [antiparallel] to the arrow-preserving propagator lines

in the loop. Indeed, this rule is crucial for obtaining the correct sign for the triangle anomaly

calculation in Section 6.26.

Symmetry factors for identical particles are implemented in the usual way. Fermi-Dirac

statistics are implemented by the following rules:

• Each closed fermion loop gets a factor of −1.

• A relative minus sign is imposed between terms contributing to a given amplitude whenever

the ordering of external state spinors (written left-to-right in a formula) differs by an odd

permutation.

Amplitudes generated according to these rules will contain objects of the form:

a = z1Σz2 (4.4.3)

43This rule is simply a consequence of the order of the spinor indices in Fig. 4.2.2, as noted in Section 4.2.
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where z1 and z2 are each commuting external spinor wave functions x, x†, y, or y†, and Σ is a

sequence of alternating σ and σ matrices. The complex conjugate of this quantity is obtained

by applying the results of eqs. (2.42)–(2.46), and is given by44

a∗ = z†2Σrz
†
1 (4.4.4)

where Σr is obtained from Σ by reversing the order of all the σ and σ matrices, and using the same

rule for suppressed spinor indices. [Notice that this rule for taking complex conjugates has the

same form as for anticommuting spinors; cf. eqs. (2.42)–(2.46).] We emphasize that in principle,

it does not matter in what direction a diagram is traversed while applying the rules. However,

for each diagram one must include a sign that depends on the ordering of the external fermions.

This sign can be fixed by first choosing some canonical ordering of the external fermions. Then

for any graph that contributes to the process of interest, the corresponding sign is positive

(negative) if the ordering of external fermions is an even (odd) permutation with respect to the

canonical ordering. If one chooses a different canonical ordering, then the resulting amplitude

changes by an overall phase (is unchanged) if this ordering is an odd (even) permutation of the

original canonical ordering.45 This is consistent with the fact that the S-matrix element is only

defined up to an overall sign, which is not physically observable.46

Note that different graphs contributing to the same process will often have different external

state wave function spinors, with different arrow directions, for the same external fermion.

Furthermore, there are no arbitrary choices to be made for arrow directions, as there are in some

four-component Feynman rules for Majorana fermions (as discussed in Appendix G.) Instead,

one must add together all Feynman graphs that obey the rules.

4.5 Basic examples of writing down diagrams and amplitudes

Some simple examples will help clarify the rules of Section 4.4. In the tree-level Feynman graphs

of this subsection, we label all two-component fermion lines by their corresponding left-handed

(12 , 0) fields. (We shall propose a slightly different labeling convention in Section 5.) A larger

number of examples, drawn from practical calculations, are given in Section 6.

44For Lorentz-scalar quantities of the form given by eq. (4.4.3), there is no distinction between complex conju-
gation and hermitian conjugation.

45For a process with exactly two external fermions, it is convenient to apply the Feynman rules by starting from
the same fermion external state in all diagrams. That way, all terms in the amplitude have the same canonical
ordering of fermions and there are no additional minus signs between diagrams. However, if there are four or more
external fermions, it often happens that there is no way to choose the same ordering of external state spinors for
all graphs when the amplitude is written down. Then the relative signs between different graphs must be chosen
according to the relative sign of the permutation of the corresponding external fermion spinors. This guarantees
that the total amplitude is antisymmetric under the interchange of any pair of external fermions.

46The S-matrix element is related to the invariant matrix element Mfi by Sfi = δfi+(2π)4δ(4)(pf − pi) iMfi ,
where pf (pi) is the total four-momentum of the final (initial) state. If f 6= i (i.e. the final and initial states are
distinct), then δfi = 0 in which case the invariant matrix element is only defined up to an overall (unphysical)
sign. However, if f = i, the most convenient choice for the canonical ordering of external fermions is the one that
yields 〈f |i〉 = δfi (with no extra minus sign), which then fixes the absolute sign of the invariant matrix element.
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4.5.1 Scalar boson decay to fermion pairs

Let us first consider a theory with a multiplet of uncharged, massive (12 , 0) fermions ξi, and a

real scalar φ, with interaction

Lint = −1
2

(
λijξiξj + λijξ

†iξ†j
)
φ , (4.5.1)

where λij ≡ (λij)∗ and λij = λji. Consider the decay φ→ ξi(~p1, s1)ξj(~p2, s2) [for a fixed choice

of i and j], where by ξi(~p, s) we mean the one particle state given by eq. (3.2.13).

φ

ξi(p1, s1)

ξj(p2, s2)

φ

ξi(p1, s1)

ξj(p2, s2)

Figure 4.5.1: The two tree-level Feynman diagrams contributing to the decay of a neutral
scalar into a pair of Majorana fermions.

Two diagrams contribute to this process, as shown in Fig. 4.5.1. The matrix element is:

iM = y(~p1, s1)
α(−iλijδαβ)y(~p2, s2)β + x†(~p1, s1)α̇(−iλijδα̇β̇)x†(~p2, s2)

β̇

= −iλijy(~p1, s1)y(~p2, s2)− iλijx†(~p1, s1)x
†(~p2, s2) . (4.5.2)

The second line could be written down directly by recalling that the sum over suppressed spinor

indices is taken according to eq. (2.35). Note that if we reverse the ordering for the external

fermions, the overall sign of the amplitude changes sign. This is easily checked, since for the

commuting spinor wave functions (x and y), the spinor products in eq. (4.5.2) change sign when

the order is reversed [see eqs. (2.58) and (2.59)]. This overall sign is not significant and depends

on the order used in constructing the two particle state. One could even make the choice of

starting the first diagram from fermion 1, and the second diagram from fermion 2:

iM = −iλijy(~p1, s1)y(~p2, s2)− (−1)iλijx†(~p2, s2)x
†(~p1, s1) . (4.5.3)

Here, the first term establishes the canonical ordering of fermions (12), and the contribution from

the second diagram therefore includes the relative minus sign in parentheses. Indeed, eqs. (4.5.2)

and (4.5.3) are equal. In the computation of the total decay rate for the case of i = j, one must

multiply the integral over the total phase space by 1/2 to account for the identical particles.

Next, we consider a theory of a massive neutral scalar boson that couples to a multiplet of

Dirac fermions. We denote the corresponding two-component fields by χi and η
i. For simplicity,

we take all the U(1)-charges of the χi to be equal (and opposite to the charges of the ηi). The

corresponding U(1)-invariant interaction is:

Lint = −(κijχiηj + κi
jχ†iη†j)φ , (4.5.4)
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φ

ηi(p1, s1)

χj(p2, s2)

φ

χi(p1, s1)

ηj(p2, s2)

Figure 4.5.2: The two tree-level Feynman diagrams contributing to the decay of a neutral
scalar into a pair of Dirac fermions. The χi–η

i and χj–η
j pairs, each with oppositely directed

arrows, comprise Dirac fermion states with flavor indices i and j, respectively.

where κi
j = (κij)

∗. Consider the decay φ → fi(~p1, s1)f
j(~p2, s2) [for a fixed choice of i and j],

where by f(~p, s) and f(~p, s) we mean the one particle states given by eq. (3.2.22). Two diagrams

contribute to this process, as shown in Fig. 4.5.2. Note that the outgoing fermion lines are

distinguished by their U(1)-charges. The matrix element is then given by

iM = −iκj iy(~p1, s1)y(~p2, s2)− iκijx†(~p1, s1)x
†(~p2, s2) . (4.5.5)

The matrix element for φ→ fi(~p1, s1)f
j(~p2, s2) is identical to that of φ→ ξi(~p1, s1)ξj(~p2, s2)

after replacing λij with κij . However for fixed i = j, the rate for scalar boson decay to fif
i

is twice that of ξiξi due to the final state identical particles in the latter case, as noted above.

One also arrives at the same conclusion if one treats a single Dirac fermion as a pair of mass-

degenerate two-component fields ξ1 and ξ2 [cf. eq. (3.2.15)]. Due to the U(1)-symmetry, the

scalar Yukawa interactions are diagonal in the ξ1–ξ2 basis, so the rate for scalar decay into the

Dirac fermion pair is equal to the incoherent sum of the rate for decay into ξ1ξ1 and ξ2ξ2.

4.5.2 Fermion pair annihilation into a scalar boson

It is also instructive to consider the corresponding 2 → 1 scattering (annihilation) processes

ξ(~p1, s1)ξ(~p2, s2) → φ and f(~p1, s1)f(~p2, s2) → φ, respectively. The corresponding amplitudes

are given by eqs. (4.5.2) and (4.5.5) with y → x and x† → y† (for simplicity, we neglect flavor).

In the computation of the cross-sections, there is no extra factor required to account for the case

of identical particles in the initial state. That is, the cross-section for f(~p1, s1)f(~p2, s2)→ φ is

equal to the cross-section for ξ(~p1, s1)ξ(~p2, s2)→ φ after replacing λ with κ.

This may at first seem puzzling given that a Dirac fermion can be represented by a pair

of mass-degenerate two-component fields χ1 and χ2. But, recall the standard procedure for the

calculation of decay rates and cross-sections in field theory—average over unobserved degrees of

freedom of the initial state and sum over unobserved degrees of freedom of the final state. This

mantra is well-known for dealing with spin and color degrees of freedom, but it is also applicable

to degrees of freedom associated with global internal symmetries. Thus, the cross-section for the

annihilation of a Dirac fermion pair into a neutral scalar boson can be obtained by computing the
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average of the cross-sections for ξ1(~p1, s1)ξ1(~p2, s2)→ φ and ξ2(~p1, s1)ξ2(~p2, s2)→ φ. Since the

annihilation cross-sections for ξ1ξ1 and ξ2ξ2 are equal, we confirm the annihilation cross-section

for the Dirac fermion pair obtained above in the χ–η basis. Since the latter is conceptually

simpler, subsequent computations involving Dirac fermions will be performed in the χ–η basis.

The annihilation rate of fermions enters in the analysis of the event flux due to the anni-

hilation of dark matter in the halo of our galaxy. Let us compare the rates in the case that

the dark matter is either a Majorana or a Dirac fermion. Suppose the annihilation involves two

fermions whose number densities are n1 and n2 respectively. Then the observer on Earth who

integrates along the line of sight to the annihilation events that are detected sees a flux of events

proportional to [152]
dNevents

dAdt
∼
∫
n1n2 〈σannvrel〉 dℓ , (4.5.6)

where vrel is the relative velocity of the annihilating initial state particles, σann is the annihilation

cross-section and 〈· · · 〉 refers to a thermal average [153] over the velocity distribution of dark

matter particles in the halo. We now compare the case of the annihilation of a single species of

Majorana particles and the annihilation of a Dirac fermion-antifermion pair (assumed to have

the same mass and couplings). We assume that the number density of Dirac fermions and

antifermions and the corresponding number density of Majorana fermions are all the same (and

denoted by n). Above, we showed that σann is the same for the annihilation of a single species of

Majorana and Dirac fermions. For the Dirac case, n1n2 = n2. For the Majorana case, because

the Majorana fermions are identical particles, given N initial state fermions in a volume V , there

are N(N − 1)/2 possible scatterings. In the thermodynamic limit where N , V → ∞ at fixed

n ≡ N/V , we conclude that n1n2 =
1
2n

2 for a single species of annihilating Majorana fermions.47

Hence the event flux rate for the annihilation of a Dirac fermion-antifermion pair is double that

of a single species of Majorana fermions.48 The extra factor of 1/2 can also be understood by

noting that in the case of annihilating dark matter particles (in the large N limit), all possible

scattering axes occur and are implicitly integrated over. But, integrating over 4π steradians

double counts the annihilation of identical particles (in the same way it does in the computation

of the decay rate of a scalar into identical fermions discussed above). Hence, one must include

a factor of 1
2 in this case by replacing n1n2 = n2 by 1

2n
2 in eq. (4.5.6).

The relic abundance of primordial dark matter particles in the universe is inversely propor-

tional to 〈σannvrel〉 [155]. By similar arguments to the ones just presented, it follows that the

relic abundance of a single species of Majorana fermions would be twice that of a single species

of Dirac fermions.

47The factor of 1/2, which has been erroneously omitted in many papers in the literature, was correctly employed
and explained in ref. [154].

48This is also consistent with the interpretation of a Dirac fermion as a pair of mass-degenerate Majorana
fermions.
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4.5.3 Vector boson decay into fermion pairs

Consider next the decay of a massive neutral vector boson Aµ into a pair of Majorana fermions,

Aµ → ξi(~p1, s1)ξj(~p2, s2), following from the interaction,

Lint = −GijAµξ†iσµξj , (4.5.7)

where G is an hermitian coupling matrix. The two diagrams shown in Fig. 4.5.3 contribute.

Aµ

ξj(p2, s2)

ξi(p1, s1)

Aµ

ξj(p2, s2)

ξi(p1, s1)

Figure 4.5.3: The two tree-level Feynman diagrams contributing to the decay of a massive
neutral vector boson Aµ into a pair of Majorana fermions.

We start from the fermion with momentum p1 and spin vector s1 and end at the fermion

with momentum p2 and spin vector s2, using the rules of Fig. 4.3.2. The resulting amplitude

for the decay is

iM = εµ
[
−iGijx†(~p1, s1)σµy(~p2, s2) + iGj

iy(~p1, s1)σµx
†(~p2, s2)

]
, (4.5.8)

where εµ is the vector boson polarization vector. We have used the σ-version of the vector-

fermion-fermion rule [see Fig. 4.3.2] for the first diagram of Fig. 4.5.3 and the σ-version for the

second diagram of Fig. 4.5.3, as dictated by the implicit spinor indices, which we have suppressed.

However, we could have chosen to evaluate the second diagram of Fig. 4.5.3 using the σ-version

of the vector-fermion-fermion rule by starting from the fermion with momentum p2 and spin

vector s2. In that case, the term iGj
iy(~p1, s1)σµx

†(~p2, s2) in eq. (4.5.8) is replaced by

(−1)[−iGj ix†(~p2, s2)σµy(~p1, s1)] . (4.5.9)

In eq. (4.5.9), the factor of −iGj i arises from the use of the σ-version of the vector-fermion-

fermion rule, and the overall factor of −1 appears because the order of the fermion wave functions

has been reversed; i.e. (21) is an odd permutation of (12). This is in accord with the ordering

rule stated at the end of Section 4.4. Thus, the resulting amplitude for the decay of the vector

boson into the pair of Majorana fermions now takes the form:

iM = εµ
[
−iGijx†(~p1, s1)σµy(~p2, s2) + iGj

ix†(~p2, s2)σµy(~p1, s1)
]
, (4.5.10)

which coincides with eq. (4.5.8) after using yσµx† = x†σµy [cf. eq. (2.60) with commuting

spinors]. Eq. (4.5.10) explicitly exhibits the property that the amplitude is antisymmetric under

56



the interchange of the two external identical fermions. Again, the absolute sign of the total

amplitude is not significant and depends on the choice of ordering of the outgoing states.

Next, we consider the decay of a massive neutral vector boson into a pair of Dirac fermions.

Each Dirac fermion is described by the two-component fields χi and η
i, which possess equal and

opposite U(1)-charges, respectively. The corresponding interaction Lagrangian is given by:

Lint = −Aµ[(GL)ij χ†iσµχj − (GR)j
i η†iσµη

j ] , (4.5.11)

where GL and GR are hermitian. There are two contributing graphs, as shown in Fig. 4.5.4.

Aµ

χj(p2, s2)

χi(p1, s1)

Aµ

ηj(p2, s2)

ηi(p1, s1)

Figure 4.5.4: The two tree-level Feynman diagrams contributing to the decay of a massive
neutral vector boson Aµ into a pair of Dirac fermions. The χi–η

i and χj–η
j pairs, each with

oppositely directed arrows, comprise Dirac fermion states with flavor indices i and j, respectively.

To evaluate the amplitude, we start with the fermion of momentum p1 and spin vector s1,

and end at the fermion with momentum p2 and spin vector s2. Note that the outgoing χi with

the arrow pointing outward from the vertex and the outgoing ηi with the arrow pointing inward

to the vertex both correspond to the same outgoing Dirac fermion. The amplitude for the decay

is given by:

iM = εµ
[
−i(GL)ijx†(~p1, s1)σµy(~p2, s2)− i(GR)ijy(~p1, s1)σµx

†(~p2, s2)
]

= εµ
[
−i(GL)ijx†(~p1, s1)σµy(~p2, s2)− i(GR)ijx†(~p2, s2)σµy(~p1, s1)

]
. (4.5.12)

As in the case of the decay to a pair of Majorana fermions, we have exhibited a second form

for the amplitude in eq. (4.5.12) in which the σ-version of the vertex Feynman rule has been

employed in both diagrams. Of course, the resulting amplitude must be the same in each method

(up to a possible overall sign of the total amplitude that is not determined).

The computation of the amplitude for the decay of a charged vector boson to a fermion

pair consisting of one Majorana fermion and one Dirac fermion, due to the interactions given in

eq. (4.3.21), is straightforward and will not be given explicitly here.

4.5.4 Two-body scattering of a boson and a neutral fermion

The next level of complexity consists of diagrams that involve fermion propagators. In the

examples that follow in this and in the next subsection, we shall ignore the flavor index and

consider scattering processes that involve a single flavor of Majorana or Dirac fermion. For our
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k k

Figure 4.5.5: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a Majorana fermion. There are four more diagrams, obtained from these by crossing
the initial and final scalar lines.

first example of this type, consider the tree-level matrix element for the scattering of a neutral

scalar and a two-component neutral massive fermion (φξ → φξ), with the interaction Lagrangian

given above in eq. (4.5.1). Using the corresponding Feynman rules, there are eight contributing

diagrams. Four are depicted in Fig. 4.5.5; there are another four diagrams (not shown) where

the initial and final state scalars are crossed (i.e., the initial state scalar is attached to the same

vertex as the final state fermion).

We shall write down the amplitudes for the four diagrams shown in Fig. 4.5.5, starting with

the final state fermion line and moving toward the initial state fermion line. Then,

iM =
i

k2 −m2
ξ

{
(−iλ)(−iλ∗)

[
x†(~p2, s2)σ ·k x(~p1, s1) + y(~p2, s2)σ ·k y†(~p1, s1)

]

+mξ

[
(−iλ)2y(~p2, s2)x(~p1, s1) + (−iλ∗)2x†(~p2, s2)y

†(~p1, s1)
]}

+ (crossed) ,(4.5.13)

where kµ is the sum of the two incoming (or outgoing) four-momenta, (p1, s1) are the momentum

and spin four-vectors of the incoming fermion, and (p2, s2) are those of the outgoing fermion.

The notation “(crossed)” refers to the contribution to the amplitude from diagrams which have

the initial and final scalars interchanged. Note that we could have evaluated the diagrams above

by starting with the initial vertex and moving toward the final vertex. It is easy to check that

the resulting amplitude is the negative of the one obtained in eq. (4.5.13); the overall sign change

simply corresponds to swapping the order of the two fermions and has no physical consequence.

The overall minus sign is a consequence of eqs. (2.58)–(2.60) and the minus sign difference

between the two ways of evaluating the propagator that preserves the arrow direction.

Next, we compute the tree-level matrix element for the scattering of a neutral vector boson

and a neutral massive two-component fermion ξ with the interaction Lagrangian of eq. (4.5.7).

Again there are eight diagrams: the four diagrams depicted in Fig. 4.5.6 plus another four (not
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k k

Figure 4.5.6: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a Majorana fermion. There are four more diagrams, obtained from these by
crossing the initial and final scalar lines.

shown) where the initial and final state vector bosons are crossed.

Starting with the final state fermion line and moving toward the initial state, we obtain

iM =
i

k2 −m2
ξ

{
(−iG)2x†(~p2, s2)σ ·ε∗2 σ ·k σ ·ε1 x(~p1, s1) + (iG)2y(~p2, s2)σ ·ε∗2 σ ·k σ ·ε1y

†(~p1, s1)

+(−iG)(iG)mξ

[
y(~p2, s2)σ ·ε∗2 σ ·ε1 x(~p1, s1) + x†(~p2, s2)σ ·ε∗2 σ ·ε1 y

†(~p1, s1)
]}

+(crossed) , (4.5.14)

where ε1 and ε2 are the initial and final vector boson polarization four-vectors, respectively. As

before, kµ is the sum of the two incoming (or outgoing) four-momenta, (p1, s1) and (p2, s2) are

the momentum and spin four-vectors of the incoming and outgoing fermions, respectively, and

“(crossed)” indicates the terms from diagrams in which the initial and final vector bosons are

interchanged. Alternatively, if one starts with an initial state fermion and moves toward the final

state, the resulting amplitude is the negative of the one obtained in eq. (4.5.14), as expected.

The computation of the amplitude for the scattering of a charged scalar or vector boson

and a Majorana fermion is straightforward and will not be given explicitly here.

4.5.5 Two-body scattering of a boson and a charged fermion

We first consider the scattering of a Dirac fermion with a neutral scalar. We denote the Dirac

mass of the fermion by mD. The left-handed fields χ and η have opposite charges (which we

take to be Q = +1 and −1 respectively), and interact with the scalar φ according to

Lint = −φ[κχη + κ∗χ†η†] , (4.5.15)

where κ is a coupling parameter. Then, for the elastic scattering of the Q = +1 fermion and a

scalar, the diagrams of Fig. 4.5.7 contribute at tree level plus another four diagrams (not shown)
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η η

χ η
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Figure 4.5.7: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a charged fermion. There are four more diagrams, obtained from these by crossing
the initial and final scalar lines.

where the initial and final state scalars are crossed. Now, these diagrams match precisely those

of Fig. 4.5.5. Thus, applying the Feynman rules yields the same matrix element, eq. (4.5.13),

previously obtained for the scattering of a neutral scalar and neutral two-component fermion,

with the replacement of λ with κ and mξ with mD.

We next examine the scattering of a Dirac fermion and a charged scalar, where both the

scalar and fermion have the same absolute value of the charge. As above, we denote the charged

Q = ±1 fermion by the pair of two-component fermions χ and η and the (intermediate state)

neutral two-component fermion by ξ. The charged Q = ±1 scalar is represented by the complex

scalar field Φ and its hermitian conjugate. The interaction Lagrangian takes the form:

Lint = −Φ[κ1ηξ + κ∗2χ
†ξ†]−Φ†[κ2χξ + κ∗1η

†ξ†] . (4.5.16)

Consider the scattering of an initial boson-fermion state into its charge-conjugated final state via

the exchange of a neutral fermion. The relevant diagrams are shown in Fig. 4.5.8 plus the cor-

responding diagrams with the initial and final scalars crossed. We define the four-momentum k

to be the sum of the two initial state four-momenta as shown in Fig. 4.5.8. The derivation of

the amplitude is similar to the ones given previously, and we end up with

iM =
−i

k2 −m2
ξ

{
κ∗1κ2[x

†(~p2, s2)σ ·k x(~p1, s1) + y(~p2, s2)σ ·k y†(~p1, s1)]

+mξ

[
κ22y(~p2, s2)x(~p1, s1) + (κ∗1)

2x†(~p2, s2)y
†(~p1, s1)

]}
+ (crossed) . (4.5.17)

The scattering of a charged fermion and a neutral spin-1 vector boson can be similarly

treated. For example, consider the amplitude for the elastic scattering of a charged fermion of

mass mD and a neutral vector boson. Again taking the interactions as given in eq. (4.5.11),

the relevant diagrams are those shown in Fig. 4.5.9, plus four diagrams (not shown) obtained
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η

Figure 4.5.8: Tree-level Feynman diagrams contributing to the scattering of an initial charged
scalar and a charged fermion into its charge-conjugated final state. The unlabeled intermediate
state is a neutral fermion. There are four more diagrams, obtained from these by crossing the
initial and final scalar lines.
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χ
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χ

χ η

η η

η χ

χ

Figure 4.5.9: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
vector boson and a Dirac fermion. There are four more diagrams, obtained from these by
crossing the initial and final vector lines.

from these by crossing the initial and final state vector bosons. Applying the Feynman rules of

Fig. 4.3.3, one obtains the following matrix element:

iM =
−i

k2 −m2
D

{
G2
Lx

†(~p2, s2)σ ·ε∗2 σ ·k σ ·ε1 x(~p1, s1) +G2
Ry(~p2, s2)σ ·ε∗2 σ ·k σ ·ε1y

†(~p1, s1)

+mDGLGR

[
y(~p2, s2)σ ·ε∗2 σ ·ε1 x(~p1, s1) + x†(~p2, s2)σ ·ε∗2 σ ·ε1 y

†(~p1, s1)
]}

+ (crossed) ,

(4.5.18)

and the assignments of momenta and spins are as before.

The computation of the amplitude for the scattering of a charged fermion and a charged

vector boson is straightforward and will not be given explicitly here.
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4.5.6 Two-body fermion–fermion scattering

Finally, let us work out an example with four external state fermions. Consider the case of

elastic scattering of two identical Majorana fermions due to scalar exchange, governed by the

interaction of eq. (4.5.1). The diagrams for scattering initial fermions labeled 1, 2 into final state

fermions labeled 3, 4 are shown in Fig. 4.5.10.
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Figure 4.5.10: Tree-level Feynman diagrams contributing to the elastic scattering of identical
Majorana fermions via scalar exchange in the s-channel (top row), t-channel (middle row), and
u-channel (bottom row).

The resulting invariant matrix element is:

iM = (−1) −i
s −m2

φ

{
λ2(x1x2)(y3y4) + (λ∗)2(y†1y

†
2)(x

†
3x

†
4) + |λ|2

[
(x1x2)(x

†
3x

†
4) + (y†1y

†
2)(y3y4)

]}

+
−i

t−m2
φ

{
λ2(y3x1)(y4x2) + (λ∗)2(x†3y

†
1)(x

†
4y

†
2) + |λ|2

[
(x†3y

†
1)(y4x2) + (y3x1)(x

†
4y

†
2)
]}

+(−1) −i
u−m2

φ

{
λ2(y4x1)(y3x2) + (λ∗)2(x†4y

†
1)(x

†
3y

†
2)

+|λ|2
[
(x†4y

†
1)(y3x2) + (y4x1)(x

†
3y

†
2)
]}

, (4.5.19)

where xi ≡ x(~pi, si), yi ≡ y(~pi, si), mφ is the mass of the exchanged scalar, s = (p1 + p2)
2,

t = (p1 − p3)2 and u = (p1 − p4)2. We have chosen the canonical ordering of external fermions

to be 3142 (corresponding to the t-channel contribution). For elastic scattering, this choice of

canonical ordering guarantees that if no scattering occurs then the S-matrix is just equal to the

unit operator with no extraneous minus sign (cf. footnote 46). The relative minus signs between

the t-channel diagram and the s and u-channel diagrams [shown in parentheses in eq. (4.5.19)]
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are obtained by observing that both 1234 and 4132 are both odd permutations of 3142. Note

that we would have obtained the same relative signs for the u-channel diagrams had we crossed

the initial state fermion lines instead of the final state fermion lines.

Eq. (4.5.19) can be factorized with respect to the scalar line:

iM =
i

s−m2
φ

(λx1x2 + λ∗y†1y
†
2)(λy3y4 + λ∗x†3x

†
4) +

−i
t−m2

φ

(λy3x1 + λ∗x†3y
†
1)(λy4x2 + λ∗x†4y

†
2)

+
i

u−m2
φ

(λy4x1 + λ∗x†4y
†
1)(λy3x2 + λ∗x†3y

†
2) . (4.5.20)

This is a common feature of Feynman graphs with a virtual boson. This example also illustrates

that in contrast to the four-component fermion formalism, the two-component fermion Feyn-

man rules typically yield many more diagrams, but the contribution of each of the diagrams is

correspondingly simpler.

4.5.7 Non-relativistic potential due to scalar or pseudoscalar exchange

Consider two distinguishable fermions, and a scalar-fermion-fermion Yukawa interaction given

by eq. (4.3.9). We can compute the force law that the fermions experience due to exchange of

a spinless boson. That is, we shall derive the Yukawa potential as a function of the separation

distance of the two fermions in the static limit.

To carry out this computation, we compute the invariant matrix element for two-body

fermion-fermion elastic scattering in the non-relativistic limit. The relevant diagrams are shown

in Fig. 4.5.10. As our two fermions are distinguishable, only the t-channel graphs (shown in the

middle row of Fig. 4.5.10) are relevant. As a result, the matrix element for the elastic scattering

of two Majorana fermions is given by the t-channel contribution of eq. (4.5.20),

iM =
i

m2
φ − t

(λy3x1 + λ∗x†3y
†
1)(λy4x2 + λ∗x†4y

†
2) . (4.5.21)

The choice of the overall sign is fixed by the canonical ordering of the external fermions.49 Al-

though the two fermions are distinguishable, we have assumed for simplicity that their (complex)

Yukawa coupling strengths are the same and given by λ. For the scattering of two distinguishable

Dirac fermions, the resulting expression for the scattering amplitude is identical to eq. (4.5.21),

with λ replaced by the appropriate complex Yukawa coupling κ.

We denote the masses of the distinguishable fermions by m1 and m2. In the non-relativistic

limit, p1 ≃ (m1 ; ~p1) and p3 ≃ (m1 ; ~p3), so that

m2
φ − t ≃ |~p1 − ~p3|2 +m2

φ ≡ |~q|2 +m2
φ , (4.5.22)

49As noted in Section 4.5.6, the canonical ordering of the external fermions in two-body elastic scattering is
determined by the requirement that 〈f |i〉 = +1 for f = i (cf. footnote 46).
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where

~q ≡ ~p3 − ~p1 = ~p2 − ~p4 (4.5.23)

is the momentum-transfer three-vector. Two separate cases will be considered.

In the first case, λ is a real coupling. This corresponds to the exchange of a JPC = 0++

scalar. Using the non-relativistic forms of eqs. (C.2.16) and (C.2.22) for the spinor bilinears, it

is only necessary to keep the leading term. We then find:

iM =
4i|λ|2m1m2

|~q|2 +m2
φ

δs1s3δs2s4 , (4.5.24)

in agreement with eq. (4.123) of ref. [114].

In the second case, λ is purely imaginary, and we will write λ = i|λ| (the overall sign is

not significant). This corresponds to the exchange of a JPC = 0−+ pseudoscalar. Again, we

use the non-relativistic forms of eqs. (C.2.16) and (C.2.22) for the spinor bilinears. However,

in this case the leading term cancels and we must retain the O(|~p|/m) terms appearing in the

non-relativistic limit of the spinor bilinears. In this case, we find

iM =
i|λ|2

|~q|2 +m2
φ

(~q ·ŝaτas3s1) (~q ·ŝ
bτ bs4s2) . (4.5.25)

We choose the spin quantization axis to lie along the z-direction. That is, according to eq. (C.1.27),

we choose

(ŝ1 , ŝ2 , ŝ3) = (x̂ , ŷ , ẑ) , (4.5.26)

in which case one can rewrite eq. (4.5.25) in the more traditional way,

iM =
i|λ|2

|~q|2 +m2
φ

(~q ·~σs3s1) (~q ·~σs4s2) , (4.5.27)

where ~σ ≡ x̂τ1+ŷτ2+ẑτ3 are the usual spin-1/2 Pauli matrices.50. Thus, pseudoscalar exchange

yields a spin-dependent force law.

The non-relativistic potential that arises from the t-channel scalar or pseudoscalar exchange

is obtained by comparing the relativistic scattering amplitudeM with the Born approximation

for scattering off a potential V (~x) in non-relativistic quantum mechanics. Taking into account

the difference between the conventions for the normalization of relativistic and non-relativistic

single-particle states, one finds that the static potential is given by [156]

V (~x) = − 1

4m1m2

∫
d3q

(2π)3
M(~q)ei~q ·~x , (4.5.28)

in a convention where the invariant amplitude is defined as in footnote 46. Inserting the scatter-

ing amplitude for scalar (S) exchange, one obtains the well-known attractive spin-independent

Yukawa potential

V (~x)S = −|λ|
2

4πr
e−mφr δs1s3δs2s4 , (4.5.29)

50The subscripted spin labels on ~σ should be interpreted in the same way as outlined in footnote 95.
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where r ≡ |~x|. For the case of pseudoscalar (PS) exchange, one can easily evaluate the integral

in eq. (4.5.28) by writing qjqke
i~q ·~x = −∇j∇kei~q ·~x. The end result is [157]:

V (~x)PS =
|λ|2

16πm1m2
(~σs3s1 · ~∇)(~σs4s2 · ~∇)

e−mφr

r

=
|λ|2m2

φ

16πm1m2

{[
− 4π

3m2
φ

δ(3)(~x) +
e−mφr

r

]
~σs3s1 ·~σs4s2

+

[
1

(mφr)2
+

1

(mφr)
+

1

3

] [
3 (~σs3s1 ·~x)(~σs4s2 ·~x)

r2
− ~σs3s1 ·~σs4s2

]
e−mφr

r

}
,

(4.5.30)

where we have used [158]:

∇i∇j
(
1

r

)
= −4π

3
δij δ

(3)(~x) +
3xixj − r2δij

r5
. (4.5.31)

4.6 Self-energy functions and pole masses for two-component fermions

In this section, we discuss the self-energy functions for fermions in two-component notation,

taking into account the possibilities of loop-induced mixing and absorptive parts corresponding

to decays to intermediate states. This formalism is useful in the computation of loop-corrected

physical pole masses.

Consider a theory with left-handed fermion degrees of freedom ψ̂i labeled by an index

i = 1, 2, . . . , N . Associated with each ψ̂i is a right-handed fermion ψ̂†i, where the flavor labels are

treated as described below eq. (3.2.2). The theory is assumed to contain arbitrary interactions,

which we will not need to refer to explicitly. As discussed in Section 3.2, we diagonalize the

fermion mass matrix and identify the fermion mass eigenstates ψi as indicated in eq. (4.3.5).

In general, the mass eigenstates consist of Majorana fermions ξk (k = 1, . . . N − 2n) and Dirac

fermion pairs χℓ and ηℓ (ℓ = 1, . . . , n).51 With respect to this basis, the symmetric N ×N tree-

level fermion mass matrix, mij, is made up of diagonal elements mk and 2× 2 blocks
( 0 mℓ
mℓ 0

)

along the diagonal, where the mk and mℓ are real and non-negative. Since mij is real, the height

of the flavor indices is not significant. Nevertheless, it is useful to define mij ≡mij in order to

maintain the convention that two repeated flavor indices are summed when one index is raised

and the other is lowered.52 Note that mikm
kj = mikmkj = m2

i δ
j
i is a diagonal matrix.

The full, loop-corrected Feynman propagators with four-momentum pµ are defined by the

Fourier transforms of vacuum expectation values of time-ordered products of bilinears of the

51In order to have a unified description, we shall take the flavor index of all left-handed fields (including ηk) in
the lowered position in this subsection, in contrast to the convention adopted in Sections 3.2 and 4.3.

52We will soon be suppressing the indices, so it is convenient to employ the bar on mij to indicate its lowered
index structure.
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fully interacting two-component fermion fields [cf. footnote 35]. Following eqs. (4.2.1)–(4.2.4),

we define:

〈0|Tψαi(x)ψ†j
β̇
(y) |0〉FT = ip·σαβ̇ Ci

j(s) , (4.6.1)

〈0|Tψ†α̇i(x)ψβj (y) |0〉FT = ip·σα̇β (CT) ij(s) , (4.6.2)

〈0|Tψ†α̇i(x)ψ†j
β̇
(y) |0〉FT = iδα̇β̇D

ij(s) , (4.6.3)

〈0|Tψαi(x)ψβj (y) |0〉FT = iδα
βDij(s) , (4.6.4)

where s ≡ p2 and

(CT)ij ≡ Cj
i . (4.6.5)

One can derive eq. (4.6.2) from eq. (4.6.1) by first writing

ψ†α̇i(x)ψβj (y) = −ǫβα ǫα̇β̇ψαj(y)ψ
†i
β̇
(x) , (4.6.6)

where the minus sign arises due to the anticommutativity of the fields, and then using eq. (2.30);

the interchange of x and y (after FT) simply changes pµ to −pµ.
In general, D and D are complex symmetric matrices, and D = D⋆. The matrix C

satisfies the hermiticity condition [CT]⋆ = C. Here, we have introduced the star symbol to

mean that a quantity Q⋆ is obtained from Q by taking the complex conjugate of all Lagrangian

parameters appearing in its calculation, but not taking the complex conjugates of Euclideanized

loop integral functions, whose imaginary (absorptive) parts correspond to fermion decay widths

to multi-particle intermediate states. That is, the dispersive part of C is hermitian and the

absorptive part of C is anti-hermitian.

The diagrammatic representations of the full propagators are displayed in Fig. 4.6.1, where

Ci
j, Dij , andDij defined above are each N×N matrix functions. Note that the second diagram

of Fig. 4.6.1, when flipped by 180◦ about the axis that bisects the diagram, is equivalent to the

first diagram of Fig. 4.6.1 (with p→ −p, α→ β, β̇ → α̇ and i↔ j). In analogy with Fig. 4.2.2,

β̇α

ji

p

ip·σαβ̇ Ci
j

α̇ β

i j

p

ip·σα̇β (CT)ij

α̇ β̇

i j

iδα̇β̇D
ij

α β

i j

iδα
βDij

Figure 4.6.1: The full, loop-corrected propagators for two-component fermions are associated
with functions C(p2)i

j [and its matrix transpose], D(p2)ij , and D(p2)ij , as shown. The shaded
boxes represent the sum of all connected Feynman diagrams, with external legs included. The
four-momentum p flows from right to left.
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β̇α

ji

p

ip·σαβ̇ Ci
j or −ip·σβ̇α (CT)j i

Figure 4.6.2: The first two diagrammatic rules of Fig. 4.6.1 can be summarized by a single
diagram. Here, the choice of the σ or σ version of the rule is uniquely determined by the height
of the spinor indices on the vertex to which the full loop-corrected propagator is connected
(cf. Fig. 4.2.2 and the accompanying text)
.

one could replace the first two diagrammatic rules of Fig. 4.6.1 with a single rule shown in

Fig. 4.6.2, where we have used eq. (4.6.5) to rewrite the second version of the rule in terms of

CT. Indeed, by using the σ-version of the rule shown in Fig. 4.6.2 and flipping the corresponding

diagram by 180◦ as described above, one reproduces the rule of the second diagram of Fig. 4.6.1.

In what follows, we prefer to keep the first two rules of Fig. 4.6.1 as separate entities. This

will permit us to conveniently assemble the four diagrams of Fig. 4.6.1 into a 2× 2 block matrix

of two-component propagators [cf. eq. (G.5.2)]. In addition, by choosing the momentum flow in

the two-component propagators from right to left, the left-to-right orderings of the spinor labels

of the diagrams coincide with the ordering of spinor indices that appear in the corresponding

algebraic representations. Thus, we can multiply diagrams together and interpret them as the

product of the respective algebraic quantities taken from left to right in the normal fashion.

Given the tree-level propagators of Fig. 4.2.1, the full propagator functions are given by:

Ci
j = δi

j/(s −m2
i ) + . . . (4.6.7)

Dij = mij/(s −m2
i ) + . . . (4.6.8)

Dij = mij/(s −m2
i ) + . . . , (4.6.9)

with no sum on i in each case. They are functions of the external momentum invariant s and

of the masses and couplings of the theory. Inserting the leading terms [eqs. (4.6.7)–(4.6.9)]

into Fig. 4.6.1 and organizing the result in a 2× 2 block matrix of two-component propagators

reproduces the usual four-component fermion tree-level propagator given in eq. (G.5.2).

The computation of the full propagators can be organized, as usual in quantum field theory,

in terms of one-particle irreducible (1PI) self-energy functions. These are formally defined to be

the sum of Feynman diagrams to all orders in perturbation theory (with the corresponding tree-

level graph excluded) that contribute to the 1PI two-point Green function. Diagrammatically,

the 1PI self-energy functions are defined in Fig. 4.6.3. As in the case of the full loop-corrected

propagators, [ΞT]⋆ = Ξ and Ω = Ω⋆, where the star symbol was defined in the paragraph

following eq. (4.6.6), and (ΞT)ij ≡ Ξj
i.

We illustrate the computation of the full propagator by considering first the following dia-
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p

βα̇

i j

−ip·σα̇βΞi
j

p

β̇α

i j

−ip·σαβ̇(ΞT)ij

α β

i j

−iδαβΩij

α̇ β̇

i j

−iδα̇β̇Ωij

Figure 4.6.3: The self-energy functions for two-component fermions are associated with func-
tions Ξ(s)i

j [and its matrix transpose], Ω(s)ij , and Ω(s)ij , as shown. The shaded circles repre-
sent the sum of all one-particle irreducible, connected Feynman diagrams, and the external legs
are amputated. The four-momentum p flows from right to left.

grammatic identity (with momentum p flowing from right to left):

β̇α

ji
=

β̇α

ji

γ̇α

ki

δ

ℓ

β̇

j

γ̇α

ki

δ̇

ℓ

β̇

j

γα

ki

δ

ℓ

β̇

j

γα

ki

δ̇

ℓ

β̇

j

=

+ +

+ +

(4.6.10)

Similar diagrammatic identities can be constructed for the three other full loop-corrected prop-

agators of Fig. 4.6.1. The resulting four equations can be neatly summarized by:

F = T + TSF , (4.6.11)

where F is the matrix of full loop-corrected propagators, T is the matrix of tree-level propagators

and S is the matrix of self-energy functions. Expressing eq. (4.6.11) in terms of diagrams,





 =













1 0

0 1


+
















(4.6.12)

which, when expanded out, yields eq. (4.6.10) and the corresponding identities for the three

other full loop-corrected propagators of Fig. 4.6.1. Note that we have chosen the labeling and

momentum flow in Figs. 4.6.1 and 4.6.3 such that the spinor and flavor labels of the diagrams

appear in the appropriate left-to-right order to permit the interpretation of eq. (4.6.12) as a
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matrix equation. To solve for F ,53 we multiply eq. (4.6.11) on the left by T−1 and on the right

by F−1 to obtain T−1 = F−1 + S. Thus, F = [T−1 − S]−1. In pictures:





 =










−1

−










−1

. (4.6.13)

We evaluate the tree-level propagator matrix and its inverse using eqs. (4.6.7)–(4.6.9), keep-

ing in mind that the direction of momentum flow is from right to left:





 =

1

s−m2
i

(
imij δα

β ip·σαβ̇ δij

ip·σα̇β δij imij δα̇β̇

)
, (4.6.14)







−1

=

(
imij δα

β −ip·σαβ̇ δij
−ip·σα̇β δij imij δ

α̇
β̇

)
, (4.6.15)

where we follow the index structure defined in Figs. 4.6.1 and 4.6.3. Inserting eq. (4.6.15) into

eq. (4.6.13), one obtains a 4N × 4N matrix equation for the full propagator functions:

(
iD ip·σC

ip·σCT iD

)
=

(
i(m+Ω) −ip·σ (1−ΞT)

−ip·σ (1−Ξ) i(m+Ω)

)−1

, (4.6.16)

where 1 is the N ×N identity matrix. The right hand side of eq. (4.6.16) can be evaluated by

employing the following identity for the inverse of a block-partitioned matrix [159]:

(
P Q
R S

)−1

=

(
(P −QS−1R)−1 (R− SQ−1P )−1

(Q− PR−1S)−1 (S −RP−1Q)−1

)
, (4.6.17)

under the assumption that all inverses appearing in eq. (4.6.17) exist. Applying this result to

eq. (4.6.16), we obtain

C−1 = s(1−Ξ)− (m+Ω)(1−ΞT)−1(m+Ω) , (4.6.18)

D−1 = s(1−Ξ)(m+Ω)−1(1−ΞT)− (m+Ω) , (4.6.19)

D
−1

= s(1−ΞT)(m+Ω)−1(1−Ξ)− (m+Ω) . (4.6.20)

Note that eq. (4.6.20) is consistent with eq. (4.6.19) as Ξ⋆ = ΞT.

53Alternatively, one can solve eq. (4.6.12) by iteration and summing the resulting geometric series. This yields:

F = T + TS(T + TS(T + TS(· · · ))) = T + TST + TSTST + . . . = T [1 + ST + (ST )2 + . . .]

= T [1− ST ]−1 = (T−1)−1[1− ST ]−1 = [(1− ST )T−1]−1 = [T−1 − S]−1 ,

which is equivalent to eq. (4.6.13).
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The pole mass can be found most easily by considering the rest frame of the (off-shell)

fermion, in which the space components of pµ vanish. This reduces the spinor index dependence

to a triviality. Setting pµ = (
√
s ; 0), we search for values of s where the inverse of the full

propagator has a zero eigenvalue. This is equivalent to setting the determinant of the inverse of

the full propagator to zero. Here we shall use the well-known formula for the determinant of a

block-partitioned matrix [159]:

det

(
P Q

R S

)
= det P det (S −RP−1Q) . (4.6.21)

The end result is that the poles of the full propagator (which are in general complex),

spole,j ≡M2
j − iΓjMj , (4.6.22)

are formally the solutions to the non-linear equation54

det
[
s1− (1−ΞT)−1(m+Ω)(1−Ξ)−1(m+Ω)

]
= 0 . (4.6.23)

Some care is required in using eq. (4.6.23), since the pole squared mass always has a non-

positive imaginary part, while the loop integrals used to find the self-energy functions are complex

functions of a real variable s that is given an infinitesimal positive imaginary part. Therefore,

eq. (4.6.23) should be solved iteratively by first expanding the self-energy function matrices Ξ, Ω

and Ω in a series in s about either m2
j + iǫ or M

2
j + iǫ. The complex quantities spole,j , which can

be identified as the complex pole squared masses, are renormalization group and gauge invariant

physical observables. Examples are given in Sections 6.24 and 6.25.

The results of this section can be applied to an arbitrary collection of fermions (both

Majorana or Dirac). However, it is convenient to treat separately the case where all fermions

are Dirac fermions (consisting of pairs of two-component fields χi and ηi). As discussed in

Section 3.2, the Dirac fermion mass eigenstates are defined in eq. (3.2.31) and are determined

by the singular value decomposition of the Dirac fermion mass matrix. With respect to the mass

basis, we denote the diagonal Dirac fermion mass matrix by M ij . The elements of this matrix

are real and non-negative. Nevertheless, it will be convenient as before to define M ij ≡M ij to

maintain covariance when manipulating tensors with flavor indices.

At tree level, there are four propagators for each pair of χ and η fields as shown in Fig. 4.2.4.

The corresponding full, loop-corrected propagators are shown in Fig. 4.6.4. The naming and

sign conventions employed for the full, loop-corrected Dirac fermion propagator functions in

Fig. 4.6.4 derives from the corresponding functions used in the more traditional four-component

treatment presented in Appendix G [cf. eq. (G.7.2)].

54The determinant of the inverse of the full propagator [the inverse of eq. (4.6.16)] is equal to eq. (4.6.23)
multiplied by det [−(1−Ξ)(1−Ξ

T)]. We assume that the latter does not vanish. This must be true perturbatively
since the eigenvalues of Ξ are one-loop (or higher) quantities, which one assumes cannot be as large as 1.
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χ χ
β̇α

ji

p

ip·σαβ̇ SR i
j

η η
α̇ β

i j

p

ip·σα̇β (ST

L)
i
j

η χ
α̇ β̇

i j

iδα̇β̇ SD
ij

χ η
α β

i j

iδα
β (S T

D)ij

Figure 4.6.4: The full, loop-corrected propagators for Dirac fermions, represented by pairs
of two-component (oppositely charged) fermion fields χi and ηi, are associated with functions
SR(s)i

j, ST

L(s)
i
j, SD(s)ij , and S T

D(s)ij , as shown. The shaded boxes represent the sum of
all connected Feynman diagrams, with external legs included. The four-momentum p and the
charge of χ flow from right to left.

In general, the complex matrices SR and SL satisfy hermiticity conditions [ST

R]⋆ = SR and

[ST

L]
⋆ = SL, whereas the complex matrices SD and SD are related by SD = S ⋆

D, where the

star symbol is defined in the paragraph below eq. (4.6.6). In contrast to the general case of an

arbitrary collection of fermions treated earlier, SR and SL are unrelated and SD is a complex

matrix (not necessarily symmetric).

Instead of working in a χ–η basis for the two-component Dirac fermion fields, one can

Takagi-diagonalize the fermion mass matrix. In the new ψ-basis, the loop-corrected propagators

of Fig. 4.6.1 are applicable. It is easy to check that the number of independent functions is the

same in both methods for treating Dirac fermions. In particular, the loop-corrected propagator

functions in the ψ-basis are given in terms of the corresponding functions in the χ–η basis by:55

C =

(
SR 0
0 SL

)
, D =

(
0 ST

D

SD 0

)
, D =

(
0 S

T

D

SD 0

)
. (4.6.24)

We similarly introduce the 1PI self-energy matrix functions for the Dirac fermions in the

χ–η basis, where the corresponding self-energy functions are defined in Fig. 4.6.5. As before, the

naming and sign conventions employed for the Dirac fermion self-energy functions above derives

from the corresponding functions used in the more traditional four-component treatment of

Appendix G [cf. eq. (G.7.3)].

Once again, the complex matrices ΣL and ΣR satisfy hermiticity conditions [ΣT

L]
⋆ = ΣL

and [ΣT

R]⋆ = ΣR, whereas the complex matrices ΣD and ΣD are related by ΣD = Σ⋆
D,

where the star symbol is defined in the paragraph below eq. (4.6.6). Likewise, ΣL and ΣR are

unrelated and ΣD is a complex matrix (not necessarily symmetric). The self-energy functions

in the ψ-basis are given in terms of the corresponding functions in the χ–η basis by:55

Ξ =

(
ΣL 0
0 ΣR

)
, Ω =

(
0 ΣT

D

ΣD 0

)
, Ω =

(
0 Σ

T

D

ΣD 0

)
. (4.6.25)

55The simple forms of C in eq. (4.6.24) and Ξ in eq. (4.6.25) motivate our definitions of SL and ΣR with the
transpose as indicated in Figs. 4.6.4 and 4.6.5, respectively.
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p

χ χ
βα̇

i j

−ip·σα̇βΣL i
j

η η

p

β̇α

i j

−ip·σαβ̇(ΣT

R)
i
j

η χ
α β

i j

−iδαβΣD
ij

χ η
α̇ β̇

i j

−iδα̇β̇(ΣT

D)ij

Figure 4.6.5: The self-energy functions for two-component Dirac fermions, represented by pairs
of two-component (oppositely charged) fermion fields χi and ηi, are associated with functions
ΣL(s)i

j , ΣT

R(s)
i
j , ΣD(s)ij , and ΣT

D(s)ij , as shown. The shaded circles represent the sum of
all one-particle irreducible, connected Feynman diagrams, and the external legs are amputated.
The four-momentum p flows from right to left.

In the case of Dirac fermions fields, eq. (4.6.13) still holds in the χ–η basis, which yields:

(
iS T

D ip·σSR
ip·σ ST

L iSD

)
=

(
i(M +ΣD) −ip·σ (1−ΣT

R)

−ip·σ (1−ΣL) i(M +ΣT

D)

)−1

. (4.6.26)

Using eq. (4.6.17), it follows that:

SL
−1 = s(1−ΣR)− (M +ΣD)(1−ΣT

L)
−1(M +ΣT

D) , (4.6.27)

SR
−1 = s(1−ΣL)− (M +Σ

T

D)(1−ΣT

R)
−1(M +ΣD) , (4.6.28)

SD
−1 = s(1−ΣL)(M +ΣD)−1(1−ΣT

R)− (M +Σ
T

D) , (4.6.29)

SD

−1
= s(1−ΣT

L)(M +ΣD)−1(1−ΣR)− (M +ΣT

D) . (4.6.30)

Note that eq. (4.6.30) is consistent with eq. (4.6.29) as Σ⋆
L,R = ΣT

L,R.

The pole mass is now easily computed using the technique previously outlined. In particular,

eq. (4.6.23) becomes:

det
[
s1− (1−ΣT

R)
−1(M +ΣD)(1−ΣL)

−1(M +ΣT

D)
]
= 0 , (4.6.31)

which determines the complex pole squared masses, spole, of the corresponding Dirac fermions.

Again, the self-energy functions should be expanded in a series in s about a point with an

infinitesimal positive imaginary part.

Finally, we examine the special case of a parity-conserving vectorlike theory of Dirac

fermions (such as QED or QCD). In this case, the following relations hold among the loop-

corrected propagator functions and self-energy functions, respectively:56

SRi
j = (ST

L)
i
j , SD

ij = (S T

D)ij , (4.6.32)

ΣLi
j = (ΣT

R)
i
j , ΣD

ij = (ΣT

D)ij . (4.6.33)

By imposing eq. (4.6.33) on eqs. (4.6.27)–(4.6.30) and recalling that M ij = M ij , it is straight-

forward to verify that eq. (4.6.32) is satisfied.

56These relations are derived using four-component spinor methods in Appendix G [cf. eqs. (G.7.10) and
(G.7.11)].
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5 Conventions for fermion and antifermion names and fields

In this section, we establish conventions for labeling Feynman diagrams that contain two-

component fermion fields of the Standard Model (SM) and its minimal supersymmetric extension

(MSSM). In the case of Majorana fermions, there is a one-to-one correspondence between the

particle names and the undaggered (12 , 0) [left-handed] fields. In contrast, for Dirac fermions

there are always two distinct two-component fields that correspond to each particle name. For

a quark or lepton generically denoted by f , we employ the two-component undaggered (12 , 0)

[left-handed] fields f and f̄ (where the bar is part of the field name and does not refer to com-

plex conjugation of any kind). This is illustrated in Table 5.1, which lists the SM and MSSM

fermion particle names together with the corresponding two-component fields. For each particle,

we list the two-component field with the same quantum numbers, i.e., the field that contains

the annihilation operator for that one-particle state (which creates the one-particle state when

acting to the left on the vacuum 〈0|).
There is an option of labeling fermion lines in Feynman diagrams by particle names or by

field names; each choice has advantages and disadvantages.57 In all of the examples that follow,

we have chosen to eliminate the possibility of ambiguity as follows. We always label fermion lines

with two-component fields (rather than particle names), and adopt the following conventions:

• In the Feynman rules for interaction vertices, the external lines are always labeled by the

undaggered (12 , 0) [left-handed] field, regardless of whether the corresponding arrow is pointed in

or out of the vertex. Two-component fermion lines with arrows pointing away from the vertex

correspond to dotted indices, and two-component fermion lines with arrows pointing toward the

vertex always correspond to undotted indices. This also applies to Feynman diagrams where

the roles of the initial state and the final state are ambiguous (such as self-energy diagrams).

• Internal fermion lines in Feynman diagrams are also always labeled by the undaggered

(12 , 0) [left-handed] field(s). Internal fermion lines containing a propagator with opposing arrows

can carry two labels (e.g., see Fig. 4.5.7).

• Initial state external fermion lines (which always have physical three-momenta pointing

into the vertex) in Feynman diagrams for complete processes are labeled by the corresponding

undaggered (12 , 0) [left-handed] field if the arrow is into the vertex, and by the daggered (0, 12 )

[right-handed] field if the arrow is away from the vertex.

• Final state external fermion lines (which always have physical three-momenta pointing

out of the vertex) in Feynman diagrams for complete processes are labeled by the corresponding

daggered (0, 12) [right-handed] field if the arrow is into the vertex, and by the undaggered (12 , 0)

[left-handed] field if the arrow is away from the vertex.

57Unfortunately, the notation for fermion names can be ambiguous because some of the symbols used also
appear as names for one of the two-component fermion fields. In practice, it should be clear from the context
which set of names are being employed.
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Table 5.1: Fermion and antifermion names and two-component fields in the Standard Model
and the MSSM. In the listing of two-component fields, the first is an undaggered (12 , 0) [left-
handed] field and the second is a daggered (0, 12) [right-handed] field. The bars on the two-
component (antifermion) fields are part of their names, and do not denote some form of complex
conjugation. (In this table, neutrinos are considered to be exactly massless and the left-handed
antineutrino ν̄ is absent from the spectrum.)

Fermion name Two-component fields

ℓ− (lepton) ℓ , ℓ̄†

ℓ+ (anti-lepton) ℓ̄ , ℓ†

ν (neutrino) ν , −

ν̄ (antineutrino) − , ν†

q (quark) q , q̄†

q̄ (anti-quark) q̄ , q†

f (quark or lepton) f , f̄ †

f̄ (anti-quark or anti-lepton) f̄ , f †

Ñi (neutralino) χ0
i , χ

0
i
†

C̃+
i (chargino) χ+

i , χ
−
i
†

C̃−
i (anti-chargino) χ−

i , χ
+
i
†

g̃ (gluino) g̃ , g̃†

The rules for labeling external Dirac fermions are summarized in Fig. 5.1. These labeling

conventions differ slightly from the ones employed in Section 4.5, where all internal and external

initial state and final state fermion lines were labeled by the corresponding undaggered (12 , 0)

left-handed fields. In this latter convention, the conserved quantities (charges, lepton numbers,

baryon numbers, etc.) of the labeled fields follow the direction of the arrow that adorns the

corresponding fermion line in the diagram. In contrast, in the convention of Fig. 5.1, the

field labels used for external fermion lines always correspond to the physical particle, and the

corresponding conserved quantities of the labeled fields follow the direction of the particle three-

momentum. As an example, for either initial or final states, the two-component fields e and

ē† both represent a negatively charged electron, conventionally denoted by e−, whereas both ē

and e† represent a positively charged positron, conventionally denoted by e+ (cf. Table 5.1).

The application of our labeling conventions to processes involving Majorana fermions is

completely straightforward. For example, the conventions for employing the neutralino states
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Initial state e−:
e ē†

Initial state e+:
ē e†

Final state e−:
e ē†

Final state e+:
ē e†

Figure 5.1: The two-component field labeling conventions for external Dirac fermion lines in a
Feynman diagram for a physical process. The top row corresponds to an initial state electron,
the second row to an initial state positron, the third row to a final state electron, and the fourth
row to a final state positron. The labels above each line are the two-component field names.
The corresponding conventions for a massless neutrino are obtained by deleting the diagrams
with ē or ē†, and changing e and e† to ν and ν†, respectively.

Initial state Ñi:
χ0
i χ0

i
†

Final state Ñi:
χ0
i χ0

i
†

Figure 5.2: The two-component field labeling conventions for external Majorana fermion lines
in a Feynman diagram for a physical process. The top row corresponds to an initial state
neutralino, and the second row to a final state neutralino. The labels above each line are the
two-component field names. (The neutralino is its own antiparticle.)

as external particles are summarized in Fig. 5.2.

As a simple example, consider Bhabha scattering (e−e+ → e−e+) [160]. We require the two-

component Feynman rules for the QED coupling of electrons and positrons to the photon, which

are exhibited in Fig. 5.3. Consider the s-channel tree-level Feynman diagrams that contribute

to the invariant amplitude for e−e+ → e−e+. If we were to label the external fermion lines

according to the corresponding particle names (which does not conform to the conventions
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γ

α̇

β

ieσα̇βµ or −ieσµβα̇

e

e

(a)

γ
β

α̇

−ieσα̇βµ or ieσµβα̇

ē

ē

(b)

Figure 5.3: The two-component Feynman rules for the QED vertex. Following the conventions
outlined in Section 5, we label these rules with the (12 , 0) [left-handed] fields e and ē, which
comprise the Dirac electron. Note that Qe = −1, and the electromagnetic coupling constant e
(not to be confused with the two-component electron field that is denoted by the same letter)
is conventionally defined such that e > 0 [cf. Fig. J.1.2].

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

e−

e+

Figure 5.4: Tree-level s-channel Feynman diagrams for e−e+ → e−e+, with the external lines
labeled according to the particle names. The initial state is on the left, and the final state is on
the right. Thus, the physical momentum flow of the external particles, as well as the flow of the
labeled charges, are indicated by the arrows adjacent to the corresponding fermion lines in the
upper left diagram.

introduced above), the result is shown in Fig. 5.4. One can find the identity of the external two-

component fermion fields by carefully observing the direction of the arrow of each fermion line.

For contrast, the same diagrams, relabeled with two-component fields following the conventions

established in this section (cf. Fig. 5.1), are shown in Fig. 5.5. An explicit computation of the

invariant amplitude is given in Section 6.3.
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e

e†

ē†

ē

ē†

ē

ē†

ē

e

e†

e

e†

ē†

ē

e

e†

Figure 5.5: Tree-level s-channel Feynman diagrams for e+e− → e+e−. These diagrams are the
same as in Fig. 5.4, but with the external lines relabeled by the two-component fermion fields
according to the conventions of Fig. 5.1.

6 Practical examples from the Standard Model and its super-

symmetric extension

In this section we will present some examples to illustrate the use of the rules presented in this

paper. These examples are chosen from the Standard Model [161] and the MSSM [6–10], in

order to provide an unambiguous point of reference. In all cases, the fermion lines in Feynman

diagrams are labeled by two-component field names, rather than the particle names, as explained

in Section 5.

6.1 Top quark decay: t → bW+

We begin by calculating the decay width of a top quark into a bottom quark and W+ vector

boson. For simplicity, we treat this as a one-generation problem and ignore Cabibbo-Kobayashi-

Maskawa (CKM) [162] mixing among the three quark generations [see eq. (J.1.16) and the

surrounding text]. Let the four-momenta and helicities of these particle be (pt, λt), (kb, λb) and

(kW , λW ), respectively. Then p2t = m2
t , k

2
b = m2

b and k2
W

= m2
W

and

2pt ·kW = m2
t −m2

b +m2
W , (6.1.1)

2pt ·kb = m2
t +m2

b −m2
W , (6.1.2)

2kW ·kb = m2
t −m2

b −m2
W . (6.1.3)

Because only left-handed top quarks couple to the W boson, the only Feynman diagram for

t → bW+ is the one shown in Fig. 6.1.1. The corresponding amplitude can be read off of the

Feynman rule of Fig. J.1.2 in Appendix J. Here the initial state top quark is a two-component
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t(pt, λt)

W+(kW , λW )

b(kb, λb)

Figure 6.1.1: The Feynman diagram for t→ bW+ at tree level.

field t going into the vertex and the final state bottom quark is created by a two-component

field b†. Therefore the amplitude is given by:

iM = −i g√
2
ε∗µx

†
bσ
µxt , (6.1.4)

where ε∗µ ≡ εµ(kW , λW )∗ is the polarization vector of the W+, and x†b ≡ x†(~kb, λb) and xt ≡
x(~pt, λt) are the external state wave function factors for the bottom and top quark. Squaring

this amplitude using eq. (2.44) yields:

|M|2 = g2

2
ε∗µεν(x

†
bσ
µxt) (x

†
tσ
νxb) . (6.1.5)

Next, we can average over the top quark spin polarizations using eq. (3.1.58):

1

2

∑

λt

|M|2 =
g2

4
ε∗µενx

†
bσ
µ pt ·σ σνxb . (6.1.6)

Summing over the bottom quark spin polarizations in the same way yields a trace over spinor

indices:

1

2

∑

λt,λb

|M|2 =
g2

4
ε∗µεν Tr[σ

µpt ·σ σνkb ·σ]

=
g2

2
ε∗µεν

(
pµt k

ν
b + kµb p

ν
t − gµνpt ·kb − iǫµρνκptρkbκ

)
, (6.1.7)

where we have used eq. (2.56). Finally we can sum over the W+ polarizations according to:

∑

λW

ε∗µεν = −gµν + (kW )µ(kW )ν/m
2
W
. (6.1.8)

The end result is:

1

2

∑

spins

|M|2 =
g2

2

[
pt ·kb + 2(pt ·kW )(kb ·kW )/m2

W

]
. (6.1.9)

After performing the phase space integration, one obtains:

Γ(t→ bW+) =
1

16πm3
t

λ1/2(m2
t ,m

2
W
,m2

b)


1

2

∑

spins

|M|2



=
g2

64πm2
Wm

3
t

λ1/2(m2
t ,m

2
W
,m2

b)
[
(m2

t + 2m2
W )(m2

t −m2
W ) +m2

b(m
2
W − 2m2

t ) +m4
b

]
, (6.1.10)
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where the kinematical triangle function λ1/2 is defined by [163]:

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz. (6.1.11)

In the approximation mb ≪ mW ,mt, one ends up with the well-known result [164]

Γ(t→ bW+) =
g2mt

64π

(
2 +

m2
t

m2
W

)(
1−

m2
W

m2
t

)2

, (6.1.12)

which exhibits the Nambu-Goldstone enhancement factor (m2
t/m

2
W
) for the longitudinal W

contribution compared to the two transverse W contributions [164].

6.2 Z0 vector boson decay: Z0 → ff̄

Consider the partial decay width of the Z0 boson into a Standard Model fermion-antifermion

pair. As in the generic example of Fig. 4.5.4, there are two contributing Feynman diagrams,

shown in Fig. 6.2.1. In diagram (a), the fermion particle f in the final state is created by a

two-component field f in the Feynman rule, and the antifermion particle f̄ by a two-component

field f †. In diagram (b), the fermion particle f in the final state is created by a two-component

field f̄ , and the antifermion particle f̄ by a two-component field f̄ †. Denote the initial Z0 four-

momentum and helicity (p, λZ) and the final state fermion (f) and antifermion (f̄) momentum

and helicities (kf , λf ) and (kf̄ , λf̄ ), respectively. Then, k
2
f = k2

f̄
= m2

f and p2 = m2
Z
, and

kf ·kf̄ =
1

2
m2
Z
−m2

f , (6.2.1)

p·kf = p·kf̄ = 1
2m

2
Z
. (6.2.2)

According to the rules of Fig. J.1.2, the matrix elements for the two Feynman graphs are:

iMa = −i g
cW

(T f3 − s2WQf ) εµx
†
fσ

µyf̄ , (6.2.3)

iMb = ig
s2
W

cW
Qf εµyfσ

µx†
f̄
, (6.2.4)

where xi ≡ x(~ki, λi) and yi ≡ y(~ki, λi), for i = f, f̄ , and εµ ≡ εµ(p, λZ).

Z0(p, λZ)

f(kf , λf )

f †(kf̄ , λf̄ )

Z0(p, λZ)

f̄ †(kf , λf )

f̄(kf̄ , λf̄ )
(a) (b)

Figure 6.2.1: The Feynman diagrams for Z0 decay into a fermion-antifermion pair. Fermion
lines are labeled according to the two-component fermion field labeling convention established
in Section 5.
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Using the Bouchiat-Michel formulae developed in Appendix H.3, one can explicitly evaluate

Ma and Mb as a function of the final state fermion helicities. The result of this computation

is given in eqs. (H.3.40) and (H.3.41). If the final state helicities are not measured, then it is

simpler to square the amplitude and sum over the final state spins.

It is convenient to define:

af ≡ T f3 −Qfs2W , bf ≡ −Qfs2W . (6.2.5)

Then the squared matrix element for the decay is, using eqs. (2.43) and (2.44),

|M|2 = g2

c2
W

εµε
∗
ν

(
afx

†
fσ

µyf̄ + bfyfσ
µx†

f̄

)(
afy

†
f̄
σνxf + bfxf̄σ

νy†f

)
. (6.2.6)

Summing over the antifermion helicity using eqs. (3.1.58)–(3.1.61) gives:

∑

λf̄

|M|2 =
g2

c2
W

εµε
∗
ν

(
a2fx

†
fσ

µkf̄ ·σσνxf + b2fyfσ
µkf̄ ·σσνy

†
f

−mfafbfx
†
fσ

µσνy†f −mfaf bfyfσ
µσνxf

)
. (6.2.7)

Next, we sum over the fermion helicity:

∑

λf ,λf̄

|M|2 = g2

c2
W

εµε
∗
ν

(
a2fTr[σ

µkf̄ ·σσνkf ·σ] + b2fTr[σ
µkf̄ ·σσνkf ·σ]

−m2
fafbfTr[σ

µσν ]−m2
faf bfTr[σ

µσν ]
)
. (6.2.8)

Averaging over the Z0 polarization using

1

3

∑

λZ

εµε
∗
ν =

1

3

(
−gµν +

pµpν
m2
Z

)
, (6.2.9)

and applying eqs. (2.54)–(2.56), one gets:

1

3

∑

spins

|M|2 = g2

3c2
W

[
(a2f + b2f )

(
2kf ·kf̄ + 4 kf ·p kf̄ ·p/m2

Z

)
+ 12af bfm

2
f

]

=
2g2

3c2
W

[
(a2f + b2f )(m

2
Z
−m2

f ) + 6af bfm
2
f

]
, (6.2.10)

where we have used eqs. (6.2.1) and (6.2.2). After the standard phase space integration, we

obtain the well-known result for the partial width of the Z0:

Γ(Z0 → f f̄) =
Nf
c

16πmZ

(
1−

4m2
f

m2
Z

)1/2

1

3

∑

spins

|M|2



=
Nf
c g2mZ

24πc2
W

(
1−

4m2
f

m2
Z

)1/2 [
(a2f + b2f )

(
1−

m2
f

m2
Z

)
+ 6af bf

m2
f

m2
Z

]
. (6.2.11)

Here we have also included a factor of Nf
c (equal to 1 for leptons and 3 for quarks) for the sum

over colors. Since the Z0 is a color singlet, the color factor is simply equal to the dimension of

the color representation of the outgoing fermions.
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6.3 Bhabha scattering: e−e+ → e−e+

In our next example, we consider the computation of Bhabha scattering in QED (that is, we

consider photon exchange but neglect Z0-exchange) [160]. Bhabha scattering has also been

computed using two-component spinors in [104]. We denote the initial state electron and positron

momenta and helicities by (p1, λ1) and (p2, λ2) and the final state electron and positron momenta

and helicities by (p3, λ3) and (p4, λ4), respectively. Neglecting the electron mass, we have in

terms of the usual Mandelstam variables s, t, u:

p1 ·p2 = p3 ·p4 ≡ 1
2s , (6.3.1)

p1 ·p3 = p2 ·p4 ≡ −1
2t , (6.3.2)

p1 ·p4 = p2 ·p3 ≡ −1
2u , (6.3.3)

and p2i = 0 for i = 1, . . . , 4. There are eight distinct Feynman diagrams. First, there are four

s-channel diagrams, as shown in Fig. 5.5 with amplitudes that follow from the Feynman rules

of Fig. 5.3 (more generally, see Fig. J.1.2 in Appendix J):

iMs =

(−igµν
s

)[
(−ie x1σµy†2)(ie y3σνx

†
4) + (−ie y†1σµx2)(ie y3σνx

†
4)

+(−ie x1σµy†2)(ie x
†
3σνy4) + (−ie y†1σµx2)(ie x

†
3σνy4)

]
, (6.3.4)

where xi ≡ x(~pi, λi) and yi ≡ y(~pi, λi), for i = 1, 4. The photon propagator in Feynman gauge

is −igµν/(p1 + p2)
2 = −igµν/s. Here, we have chosen to write the external fermion spinors in

the order 1, 2, 3, 4. This dictates in each term the use of either the σ or σ forms of the Feynman

rules of Fig. 5.3. One can group the terms of eq. (6.3.4) together more compactly:

iMs = e2
(−igµν

s

)(
x1σµy

†
2 + y†1σµx2

)(
y3σνx

†
4 + x†3σνy4

)
. (6.3.5)

There are also four t-channel diagrams, as shown in Fig. 6.3.1. The corresponding ampli-

tudes for these four diagrams can be written:

iMt = (−1)e2
(−igµν

t

)(
x1σµx

†
3 + y†1σµy3

)(
x2σνx

†
4 + y†2σνy4

)
. (6.3.6)

Here, the overall factor of (−1) comes from Fermi-Dirac statistics, since the external fermion

wave functions are written in an odd permutation (1, 3, 2, 4) of the original order (1, 2, 3, 4)

established by the first term in eq. (6.3.4).

Fierzing each term using eqs. (2.66)–(2.68), and using eqs. (2.58) and (2.59), the total

amplitude can be written as:

M =Ms +Mt = 2e2
[
1

s
(x1y3)(y

†
2x

†
4) +

1

s
(y†1x

†
3)(x2y4) +

(
1

s
+

1

t

)
(y†1x

†
4)(x2y3)

+

(
1

s
+

1

t

)
(x1y4)(y

†
2x

†
3)−

1

t
(x1x2)(x

†
3x

†
4) −

1

t
(y†1y

†
2)(y3y4)

]
. (6.3.7)
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Figure 6.3.1: Tree-level t-channel Feynman diagrams for e−e+ → e−e+, with the external
lines labeled according to the two-component field names. The momentum flow of the external
particles is from left to right.

Squaring this amplitude and summing over spins, all of the cross terms will vanish in the

me → 0 limit. This is because each cross term will have an x or an x† for some electron or

positron combined with a y or a y† for the same particle, and the corresponding spin sum is

proportional to me [see eqs. (3.1.60) and (3.1.61)]. Hence, summing over final state spins and

averaging over initial state spins, the end result contains only the sum of the squares of the six

terms in eq. (6.3.7):

1

4

∑

spins

|M|2 = e4
∑

λ1,λ2,λ3,λ4

{
1

s2

[
(x1y3)(y

†
3x

†
1)(y

†
2x

†
4)(x4y2) + (y†1x

†
3)(x3y1)(x2y4)(y

†
4x

†
2)
]

+

(
1

s
+

1

t

)2 [
(y†1x

†
4)(x4y1)(x2y3)(y

†
3x

†
2) + (x1y4)(y

†
4x

†
1)(y

†
2x

†
3)(x3y2)

]

+
1

t2

[
(x1x2)(x

†
2x

†
1)(x

†
3x

†
4)(x4x3) + (y†1y

†
2)(y2y1)(y3y4)(y

†
4y

†
3)
]}

. (6.3.8)

Here we have used eq. (2.42) to get the complex square of the fermion bilinears. Performing

these spin sums using eqs. (3.1.58) and (3.1.59) and using the trace identities eq. (B.2.5):

1

4

∑

spins

|M|2 = 8e4
[
p2 ·p4 p1 ·p3

s2
+
p1 ·p2 p3 ·p4

t2
+

(
1

s
+

1

t

)2

p1 ·p4 p2 ·p3
]

= 2e4
[
t2

s2
+
s2

t2
+
(u
s
+
u

t

)2]
. (6.3.9)

Thus, the differential cross-section for Bhabha scattering is given by:

dσ

dt
=

1

16πs2


1

4

∑

spins

|M|2

 =

2πα2

s2

[
t2

s2
+
s2

t2
+
(u
s
+
u

t

)2]
. (6.3.10)

This agrees with the result given in problem 5.2 of ref. [114].

82



6.4 Polarized muon decay

So far we have only treated cases where the initial state fermion spins are averaged and the

final state spins are summed. In the case of the polarized decay of a particle or polarized

scattering we must project out the appropriate polarization of the particles in the spin sums.

This is achieved by replacing the spin sums given in eqs. (3.1.58)–(3.1.61) by the corresponding

polarized spin projections eqs. (3.1.33)–(3.1.36). As an example, we consider the decay of a

polarized muon. Polarized muon decay has also been computed using two-component spinors in

ref. [104], however with an effective four-fermion interaction.

µ (p, s) e (ke, λe)

ν†e (kν̄e , λν̄e)

νµ (kνµ , λνµ)

W−

Figure 6.4.1: Feynman diagram for electroweak muon decay.

In Fig. 6.4.1, we show the single leading order Feynman diagram for muon decay, including

the definition of the momenta. We denote the mass of the muon by mµ, and neglect the electron

mass. We shall measure the spin of the muon in its rest frame with respect to a fixed z-axis.

Assume that the muon at rest is polarized such that its spin component along the ẑ-direction

is s = +1
2 .

The decay amplitude is given by58

iM =

(−ig√
2

)2 (
x†νµσρxµ

)(
x†eστyν̄e

)(−igρτ
DW

)
, (6.4.1)

where DW = (p − kνµ)2 −m2
W is the denominator of the W -boson propagator. In eq. (6.4.1),

xµ ≡ x(~p, s = 1
2) for the spin-polarized initial state muon, and x†νµ ≡ x(~kνµ , λνµ), x†e ≡ x†(~ke, λe),

and yν̄e ≡ y(~kν̄e , λν̄e). Squaring the amplitude using eq. (2.44), we obtain

|M|2 =
g4

4D2
W

(
x†νµσ

ρxµ

)(
x†µσ

τxνµ

)(
x†eσρyν̄e

)(
y†ν̄eστxe

)
. (6.4.2)

Summing over the neutrino and electron spins using eqs. (3.1.58)–(3.1.59), and using eq. (3.1.46)

for the muon spin (with s = 1
2 ) yields:

∑

λνµλeλν̄e

|M|2 =
g4

8D2
W

Tr[kνµ ·σ σρ(p·σ −mµS ·σ)στ ] Tr[ke ·σ σρkν̄e ·σ στ ]

=
2g4

D2
W

ke ·kνµ kν̄e ·(p−mµS) , (6.4.3)

58Throughout this subsection µ and ν are particle labels. Hence, we employ ρ and τ as Lorentz vector indices.

83



where Sµ in an arbitrary frame is given by eq. (3.1.15) [with ŝ = ẑ]. To obtain the second

line we have used the trace identity eq. (2.55) twice; note that the resulting terms linear in the

antisymmetric tensor do not contribute, but the term quadratic in the antisymmetric tensor

does.

The differential decay amplitude is now given by

dΓ =
1

2mµ
|M|2 d3~ke

(2π)32Ee

d3~kν̄e
(2π)32Eν̄e

d3~kνµ
(2π)32Eνµ

(2π)4δ4(p− ke − kν̄e − kνµ) , (6.4.4)

where Ei, i = e, ν̄e, νµ are the energies of the final state particles in the muon rest frame. In

the following we shall neglect both the electron mass and the momentum in the W -propagator

compared to the W -boson mass, so D2
W → m4

W . We can now use the following identity to

integrate over the neutrino momenta [165]

∫
d3~kν̄e

(2π)32Eν̄e

d3~kνµ
(2π)32Eνµ

(2π)4δ4(q − kν̄e − kνµ)kρν̄ekτνµ =
1

96π
(q2gρτ + 2qρqτ ) , (6.4.5)

where q = p− ke. It follows that

dΓ =
g4

1536π4mµm
4
W

[
q2 ke ·(p −mµS) + 2q ·ke q ·(p −mµS)

] d3~ke
Ee

. (6.4.6)

In the muon rest frame, ke = Ee(1; cos φ sin θ, sinφ sin θ, cos θ) and S = (0; 0, 0, 1), so that

q2 = m2
µ − 2Eemµ and ke ·(p −mµS) = mµEe(1 + cos θ) and q ·ke = mµEe and q ·(p −mµS) =

mµ(mµ − Ee − Ee cos θ). Noting that the maximum energy of the electron is mµ/2 (when the

neutrino and antineutrino both recoil in the opposite direction), we obtain

dΓ

d(cos θ)
=

g4m2
µ

768π3m4
W

∫ mµ/2

0
dEeE

2
e

[
3− 4Ee

mµ
+

(
1− 4Ee

mµ

)
cos θ

]

=
g4m5

µ

3·212π3m4
W

(
1− 1

3 cos θ
)
, (6.4.7)

in agreement with ref. [165]. Introducing the Fermi constant, GF ≡
√
2g2/(8m2

W ), we can

rewrite eq. (6.4.7) as:

dΓ

d(cos θ)
=
G2
Fm

5
µ

384π3
(
1− 1

3 cos θ
)
. (6.4.8)

Integrating over cos θ reproduces the well-known total muon decay width,

Γ =
G2
Fm

5
µ

192π3
. (6.4.9)

6.5 Neutral MSSM Higgs boson decays φ0 → ff̄ , for φ0 = h0,H0, A0

In this subsection, we consider the decays of the neutral Higgs scalar bosons φ0 = h0, H0, and A0

of the MSSM into Standard Model fermion-antifermion pairs. The relevant tree-level Feynman
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φ0

f̄ (p2, λ2)

f (p1, λ1)

(a)

φ0

f † (p1, λ1)

f̄ † (p2, λ2)

(b)

Figure 6.5.1: The Feynman diagrams for the decays φ0 → f f̄ , where φ0 = h0,H0, A0 are
the neutral Higgs scalar bosons of the MSSM, and f is a Standard Model quark or lepton, and
f̄ is the corresponding antiparticle. We have labeled the external fermions according to the
two-component field names.

diagrams are shown in Fig. 6.5.1. The final state fermion is assigned four-momentum p1 and

polarization λ1, and the antifermion is assigned four-momentum p2 and polarization λ2. We will

first work out the case that f is a charge −1/3 quark or a charged lepton, and later note the

simple change needed for charge +2/3 quarks. The Feynman rules of Fig. K.1.1 of Appendix K

tell us that the amplitudes are:

iMa = −
i√
2
Yf k

∗
dφ0 x

†
1x

†
2 , (6.5.1)

iMb = −
i√
2
Yf kdφ0 y1y2 . (6.5.2)

Here Yf is the Yukawa coupling of the fermion, kdφ0 is the Higgs mixing parameter from

eq. (K.1.8), and the external wave functions are denoted x1 ≡ x(~p1, λ1), y1 ≡ y(~p1, λ1) for

the fermion and x2 ≡ x(~p2, λ2), y2 ≡ y(~p2, λ2) for the antifermion. Squaring the total ampli-

tude iM = iMa + iMb using eq. (2.42) results in:

|M|2 = 1

2
|Yf |2

[
|kdφ0 |2(y1y2 y†2y

†
1 + x†1x

†
2 x2x1) + (k∗dφ0)

2x†1x
†
2 y

†
2y

†
1 + (kdφ0)

2y1y2 x2x1

]
. (6.5.3)

Summing over the final state antifermion spin using eqs. (3.1.58)–(3.1.61) gives:

∑

λ2

|M|2 = 1

2
|Yf |2

[
|kdφ0 |2(y1p2 ·σy†1 + x†1p2 ·σx1)− (k∗dφ0)

2mfx
†
1y

†
1 − (kdφ0)

2mfy1x1

]
. (6.5.4)

Summing over the fermion spins in the same way yields:

∑

λ1,λ2

|M|2 =
1

2
|Yf |2

{
|kdφ0 |2(Tr[p2 ·σp1 ·σ] + Tr[p2 ·σp1 ·σ])− 2(k∗dφ0)

2m2
f − 2(kdφ0)

2m2
f

}

= |Yf |2
{
2|kdφ0 |2p1 ·p2 − 2Re[(kdφ0)

2]m2
f

}

= |Yf |2
{
|kdφ0 |2(m2

φ0 − 2m2
f )− 2Re[(kdφ0)

2]m2
f

}
, (6.5.5)

where we have used the trace identity eq. (2.54) to obtain the second equality. The corresponding

expression for charge +2/3 quarks can be obtained by simply replacing kdφ0 with kuφ0 . The total
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decay rates now follow from integration over phase space [166]

Γ(φ0 → f f̄) =
Nf
c

16πmφ0

(
1− 4m2

f/m
2
φ0

)1/2 ∑

λ1,λ2

|M|2. (6.5.6)

The factor of Nf
c = 3 for quarks and 1 for leptons comes from the sum over colors.

Results for special cases are obtained by putting in the relevant values for the couplings

and the mixing parameters from eqs. (K.1.7) and (K.1.8). In particular, for the CP-even Higgs

bosons h0 and H0, kdφ0 and kuφ0 are real, so one obtains:

Γ(h0 → bb̄) =
3

16π
Y 2
b sin2αmh0

(
1− 4m2

b/m
2
h0
)3/2

, (6.5.7)

Γ(h0 → cc̄) =
3

16π
Y 2
c cos2αmh0

(
1− 4m2

c/m
2
h0
)3/2

, (6.5.8)

Γ(h0 → τ+τ−) =
1

16π
Y 2
τ sin2αmh0

(
1− 4m2

τ/m
2
h0
)3/2

, (6.5.9)

Γ(H0 → tt̄) =
3

16π
Y 2
t sin2αmH0

(
1− 4m2

t /m
2
H0

)3/2
, (6.5.10)

Γ(H0 → bb̄) =
3

16π
Y 2
b cos2 αmH0

(
1− 4m2

b/m
2
H0

)3/2
, (6.5.11)

etc., which check with the expressions in Appendix C of ref. [167]. For the CP-odd Higgs boson

A0, the mixing parameters kuA0 = i cosβ0 and kdA0 = i sinβ0 are purely imaginary, so

Γ(A0 → tt̄) =
3

16π
Y 2
t cos2β0mA0

(
1− 4m2

t/m
2
A0

)1/2
, (6.5.12)

Γ(A0 → bb̄) =
3

16π
Y 2
b sin2β0mA0

(
1− 4m2

b/m
2
A0

)1/2
, (6.5.13)

Γ(A0 → τ+τ−) =
1

16π
Y 2
τ sin2β0mA0

(
1− 4m2

τ/m
2
A0

)1/2
. (6.5.14)

Note that the differing kinematic factors for the CP-odd Higgs decays came about because

of the different relative sign between the two Feynman diagrams. For example, in the case of

h0 → bb̄, the matrix element is

iM =
i√
2
Yb sinα (y1y2 + x†1x

†
2), (6.5.15)

while for A0 → bb̄, it is

iM =
1√
2
Yb sinβ0 (y1y2 − x†1x

†
2). (6.5.16)

The differing relative sign between y1y2 and x†1x
†
2 follows from the imaginary pseudoscalar La-

grangian coupling, which is complex conjugated in the second diagram.

6.6 Sneutrino decay ν̃e → C̃+

i e−

Next we consider the process of sneutrino decay ν̃e → C̃+
i e

− in the MSSM. Because only the left-

handed electron can couple to the chargino and sneutrino (with the excellent approximation that
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ν̃e

e (ke, λe)

χ+
i (kC̃ , λC̃)

Figure 6.6.1: The Feynman diagram for ν̃e → C̃+
i e

− in the MSSM.

the electron Yukawa coupling vanishes), there is just one Feynman diagram, shown in Fig. 6.6.1.

The external wave functions of the electron and chargino are denoted as xe ≡ x(~ke, λe), and

xC̃ ≡ x(~kC̃ , λC̃), respectively. From the corresponding Feynman rule given in Fig. K.4.1 of

Appendix K, the amplitude is:

iM = −igVi1 x†C̃x
†
e, (6.6.1)

where Vij is one of the two matrices used to diagonalize the chargino masses [cf. eq. (K.2.6)].

Squaring this using eq. (2.42) yields:

|M|2 = g2|Vi1|2 (x†C̃x
†
e)(xexC̃) . (6.6.2)

Summing over the electron and chargino spin polarizations using eq. (3.1.58) yields

∑

λe,λC̃

|M|2 = g2|Vi1|2Tr[ke ·σ kC̃ ·σ] = 2g2|Vi1|2 ke ·kC̃ = g2|Vi1|2(m2
ν̃e −m2

C̃i
) , (6.6.3)

where we have used 2ke ·kC̃ = m2
ν̃e
−m2

C̃i
, neglecting the electron mass. Therefore, after inte-

grating over phase space in the standard way, the decay width is:

Γ(ν̃e → C̃+
i e

−) =
1

16πmν̃e

(
1−

m2
C̃i

m2
ν̃e

)
∑

λe,λC̃

|M|2

 =

g2

16π
|Vi1|2mν̃e

(
1−

m2
C̃i

m2
ν̃e

)2

, (6.6.4)

which agrees with ref. [168] and eq. (3.8) in ref. [7].

6.7 Chargino decay C̃+

i → ν̃ee
+

Here again, there is just one Feynman diagram (neglecting the electron mass in the Yukawa

coupling) shown in Fig. 6.7.1. The external wave functions for the chargino and the positron

are denoted by xC̃ ≡ x(~pC̃ , λC̃) and ye ≡ y(~ke, λe), respectively. The fermion momenta and

helicities are denoted as in Fig. 6.7.1. As in the previous example, the amplitude can be directly

determined using the Feynman rule given in Fig. K.4.1 in Appendix K:

M = −igV ∗
i1 xC̃ ye . (6.7.1)

Squaring this using eq. (2.42) yields:

|M|2 = g2|Vi1|2 (xC̃ye) (y†ex
†
C̃
) . (6.7.2)
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χ+
i (pC̃ , λC̃)

e† (ke, λe)

ν̃e

Figure 6.7.1: The Feynman diagram for C̃+
i → ν̃ee

+ in the MSSM.

Summing over the electron helicity and averaging over the chargino helicity using eqs. (3.1.58)

and (3.1.59) we obtain:

1
2

∑

λe,λC̃

|M|2 = 1
2g

2|Vi1|2Tr[ke ·σ pC̃ ·σ] = g2|Vi1|2ke ·pC̃ =
g2

2
|Vi1|2(m2

C̃i
−m2

ν̃e) . (6.7.3)

So the decay width is, neglecting the electron mass:

Γ(C̃+
i → ν̃e+) =

1

16πmC̃i

(
1−

m2
ν̃e

m2
C̃i

)
1

2

∑

λe,λC̃

|M|2

 =

g2

32π
|Vi1|2mC̃i

(
1−

m2
ν̃e

m2
C̃i

)2

, (6.7.4)

which agrees with ref. [168].

6.8 Neutralino decays Ñi → φ0Ñj, for φ0 = h0,H0, A0

Next we consider the decay of a neutralino to a lighter neutralino and neutral Higgs boson

φ0 = h0, H0, or A0. The two tree-level Feynman graphs are shown in Fig. 6.8.1, where we

have also labeled the momenta and helicities. We denote the masses for the neutralinos and the

Higgs boson as m
Ñi
, m

Ñj
, and mφ0 . Using the Feynman rules of Fig. K.3.1, the amplitudes are

respectively given by

iM1 = −iY xiyj , (6.8.1)

iM2 = −iY ∗ y†ix
†
j , (6.8.2)

where the coupling Y ≡ Y φ0χ0
iχ

0
j is defined in eq. (K.3.1), and the external wave functions are

xi ≡ x(~pi, λi), y†i ≡ y†(~pi, λi), yj ≡ y(~kj, λj), and x
†
j ≡ x†(~kj, λj).

Taking the square of the total matrix element using eq. (2.42) gives:

|M|2 = |Y |2(xiyjy†jx
†
i + y†ix

†
jxjyi) + Y 2xiyjxjyi + Y ∗2y†ix

†
jy

†
jx

†
i . (6.8.3)

Summing over the final state neutralino spins using eqs. (3.1.58)–(3.1.61) yields

∑

λj

|M|2 = |Y |2(xikj ·σx†i + y†ikj ·σyi)− Y 2mÑj
xiyi − Y ∗2mÑj

y†ix
†
i . (6.8.4)

Averaging over the initial state neutralino spins in the same way gives
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χ0
i (pi, λi)

χ0 †
j (kj , λj)

φ0

χ0 †
i (pi, λi)

χ0
j (kj , λj)

φ0

Figure 6.8.1: The Feynman diagrams for Ñi → Ñjφ
0 in the MSSM.

1

2

∑

λi,λj

|M|2 =
1

2
|Y |2(Tr[kj ·σpi ·σ] + Tr[kj ·σpi ·σ]) + Re[Y 2]mÑi

mÑj
Tr[12×2]

= 2|Y |2pi ·kj + 2Re[Y 2]mÑi
mÑj

= |Y |2(m2
Ñi

+m2
Ñj
−m2

φ0) + 2Re[Y 2]m
Ñi
m
Ñj
, (6.8.5)

where we have used eq. (2.54) to obtain the second equality. The total decay rate is therefore

Γ(Ñi → φ0Ñj) =
1

16πm3
Ñi

λ1/2(m2
Ñi
,m2

φ0
,m2

Ñj
)


1

2

∑

λi,λj

|M|2



=
m
Ñi

16π
λ1/2(1, rφ, rj)

[
|Y φ0χ0

iχ
0
j |2(1 + rj − rφ) + 2Re

[(
Y φ0χ0

iχ
0
j
)2]√

rj

]
, (6.8.6)

where the triangle function λ1/2 is defined in eq. (6.1.11), rj ≡ m2
Ñj
/m2

Ñi
and rφ ≡ m2

φ0/m
2
Ñi
.

The results for φ0 = h0,H0, A0 can now be obtained by using eqs. (K.1.7) and (K.1.8) in

eq. (K.3.1). In comparing eq. (6.8.6) with the original calculation in ref. [169], it is helpful to

employ eqs. (4.51) and (4.53) of [170]. The results agree.

6.9 Ñi → Z0Ñj

For this two-body decay there are two tree-level Feynman diagrams, shown in Fig. 6.9.1 with

the definitions of the helicities and the momenta. Using the Feynman rules of Fig. K.2.1, the

two amplitudes are given by59

iM1 = −i g
cW
O′′L
ji xiσ

µx†jε
∗
µ , (6.9.1)

iM2 = i
g

cW
O′′L
ij y

†
iσ

µyjε
∗
µ , (6.9.2)

where the external wave functions are xi = x(~pi, λi), y
†
i = y†(~pi, λi), x

†
j = x†(~kj, λj), yj =

y(~kj, λj), and ε∗µ = εµ(~kZ , λZ)
∗. Noting that O′′L

ji = O′′L∗
ij [see eq. (K.2.5)], and applying

eqs. (2.43) and (2.44), we find that the squared matrix element is:

|M|2 =
g2

c2W
ε∗µεν

[
|O′′L

ij |2(xiσµx†jxjσνx
†
i + y†iσ

µyjy
†
jσ

νyi)

−
(
O′′L
ij

)2
y†iσ

µyjxjσ
νx†i −

(
O′′L∗
ij

)2
xiσ

µx†jy
†
jσ

νyi

]
. (6.9.3)

59When comparing with the four-component Feynman rule in ref. [7] note that O′′L
ij = −O′′R∗

ij [cf. eq. (K.2.5)].
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χ0
i (pi, λi)

χ0
j (kj , λj)

Z0 (kZ , λZ)

χ0 †
i (pi, λi)

χ0 †
j (kj , λj)

Z0 (kZ , λZ)

Figure 6.9.1: The Feynman diagrams for Ñi → ÑjZ
0 in the MSSM.

Summing over the final state neutralino spin using eqs. (3.1.58)–(3.1.61) yields:

∑

λj

|M|2 =
g2

c2W
ε∗µεν

[
|O′′L

ij |2(xiσµkj ·σσνx†i + y†iσ
µkj ·σσνyi)

+
(
O′′L
ij

)2
mÑj

y†iσ
µσνx†i +

(
O′′L∗
ij

)2
mÑj

xiσ
µσνyi

]
. (6.9.4)

Averaging over the initial state neutralino spins in the same way gives

1

2

∑

λi,λj

|M|2 =
g2

2c2W
ε∗µεν

[
|O′′L

ij |2
(
Tr[σµkj ·σσνpi ·σ] + Tr[σµkj ·σσνpi ·σ]

)

−
(
O′′L
ij

)2
m
Ñi
m
Ñj

Tr[σµσν ]−
(
O′′L∗
ij

)2
m
Ñi
m
Ñj

Tr[σµσν ]

]

=
2g2

c2W
ε∗µεν

{
|O′′L

ij |2
(
kµj p

ν
i + pµi k

ν
j − pi ·kjgµν

)
− Re

[(
O′′L
ij

)2]
mÑi

mÑj
gµν
}
,(6.9.5)

where in the last equality we have applied eqs. (2.54)–(2.56). Using

∑

λZ

εµ∗εν = −gµν + kµZk
ν
Z/m

2
Z , (6.9.6)

we obtain

1

2

∑

λi,λj ,λZ

|M|2 =
2g2

c2W

{
|O′′L

ij |2
(
pi ·kj + 2pi ·kZkj ·kZ/m2

Z

)
+ 3mÑi

mÑj
Re
[(
O′′L
ij

)2]
}
. (6.9.7)

Using 2kj ·kZ = m2
Ñi
−m2

Ñj
−m2

Z , 2pi ·kj = m2
Ñi

+m2
Ñj
−m2

Z , and 2pi ·kZ = m2
Ñi
−m2

Ñj
+m2

Z ,

we obtain the total decay width:

Γ(Ñi → Z0Ñj) =
1

16πm3
Ñi

λ1/2
(
m2
Ñi
,m2

Z
,m2

Ñj

)

1

2

∑

λi,λj ,λZ

|M|2

 (6.9.8)

=
g2mÑi

16πc2W
λ1/2(1, rZ , rj)

[
|O′′L

ij |2
(
1 + rj − 2rZ + (1− rj)2/rZ

)
+ 6Re

[(
O′′L
ij

)2]√
rj

]
, (6.9.9)

where

rj ≡ m2
Ñj
/m2

Ñi
, rZ ≡ m2

Z/m
2
Ñi
, (6.9.10)

and the triangle function λ1/2 is defined in eq. (6.1.11). The result obtained in eq. (6.9.9) agrees

with the original calculation in ref. [169].
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6.10 Selectron pair production in electron-electron collisions

6.10.1 e−e− → ẽ
−
L ẽ

−
R

Here there are two Feynman graphs (neglecting the electron mass and Yukawa couplings), shown

in Fig. 6.10.1. Note that these two graphs are related by interchange of the identical initial

state electrons. Let the electrons have momenta p1 and p2 and the selectrons have momenta

kẽL and kẽR , so that p21 = p22 = 0; k21 = m2
ẽL
; k22 = m2

ẽR
; s = (p1 + p2)

2 = (k1 + k2)
2;

t = (k1 − p1)2 = (k2 − p2)2; u = (k1 − p2)2 = (k2 − p1)2.

e (p1, λ1)

ē† (p2, λ2)

ẽ−L (k1)

ẽ−R (k2)

χ0
i

e (p2, λ2)

ē† p1, λ1) ẽ−L (k1)

ẽ−R (k2)

χ0
i

Figure 6.10.1: Feynman diagrams for e−e− → ẽ−L ẽ
−
R.

Using the Feynman rules of Fig. K.4.2, the matrix element for the first graph, for each

neutralino Ñi exchanged in the t channel, is:

iMt =

[
i
g√
2

(
N∗
i2 +

sW
cW

N∗
i1

)][
−i
√
2g
sW
cW

Ni1

]
x1

[
i(k1 − p1)·σ

(k1 − p1)2 −m2
Ñi

]
y†2 . (6.10.1)

We employ the notation for the external wave functions xi = (~pi, λi), i = 1, 2 and analogously

for yi, x
†
i , y

†
i . The matrix elements for the second (u-channel) graph are the same with the two

incoming electrons exchanged, e1 ↔ e2:

iMu = (−1)
[
i
g√
2

(
N∗
i2 +

sW
cW

N∗
i1

)][
−i
√
2g
sW
cW

Ni1

]
x2

[
i(k1 − p2)·σ

(k1 − p2)2 −m2
Ñi

]
y†1 . (6.10.2)

Note that since we have written the fermion wave function spinors in the opposite order inM2

compared toM1, there is a factor (−1) for Fermi-Dirac statistics. Alternatively, starting at the

electron with momentum p1 and using the Feynman rules as above, we can directly write:

iMu =

[
i
g√
2

(
N∗
i2 +

sW
cW

N∗
i1

)][
−i
√
2g
sW
cW

Ni1

]
y†1

[
−i(k1 − p2)·σ

(k1 − p2)2 −m2
Ñi

]
x2 . (6.10.3)

This has no Fermi-Dirac factor (−1) because the wave function spinors are written in the same

order as inMt. However, now the Feynman rule for the propagator has an extra minus sign, as

can be seen in Fig. 4.2.2. We can also obtain eq. (6.10.3) from eq. (6.10.2) by using eq. (2.60).

So we can write for the total amplitude:

M =Mt +Mu = x1a·σy†2 + y†1b·σx2 , (6.10.4)
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where

aµ ≡ g2sW
cW

(kµ1 − p
µ
1 )

4∑

i=1

Ni1(N
∗
i2 +

sW
cW

N∗
i1)

1

t−m2
Ñi

, (6.10.5)

bµ ≡ −g
2sW
cW

(kµ1 − p
µ
2 )

4∑

i=1

Ni1(N
∗
i2 +

sW
cW

N∗
i1)

1

u−m2
Ñi

. (6.10.6)

Hence, using eqs. (2.43) and (2.44):

|M|2 =
(
x1a·σy†2

)(
y2a

∗ ·σx†1
)
+
(
y†1b·σx2

)(
x†2b

∗ ·σy1
)

+
(
x1a·σy†2

)(
x†2b

∗ ·σy1
)
+
(
y†1b·σx2

)(
y2a

∗ ·σx†1
)
. (6.10.7)

Averaging over the initial state electron spins using eqs. (3.1.58)–(3.1.61), the a, b∗ and a∗, b

cross terms are proportional to me and can thus be neglected in our approximation. We get:

1

4

∑

λ1,λ2

|M|2 = 1

4
Tr[a·σ p2 ·σ a∗ ·σ p1 ·σ] +

1

4
Tr[b·σ p2 ·σ b∗ ·σ p1 ·σ] . (6.10.8)

These terms can be simplified using the identities:

Tr[(k1 − p1)·σ p2 ·σ (k1 − p1)·σ p1 ·σ] = Tr[(k1 − p2)·σ p2 ·σ (k1 − p2)·σ p1 ·σ]

= tu−m2
ẽLm

2
ẽR , (6.10.9)

which follow from eq. (2.55) and (2.56), resulting in:

1

4

∑

λ1,λ2

|M|2 =
g4s2W
4c2W

(tu−m2
ẽLm

2
ẽR)

4∑

i,j=1

Nj1N
∗
i1(N

∗
j2 +

sW
cW

N∗
j1)(Ni2 +

sW
cW

Ni1)

[
1

(t−m2
Ñi
)(t−m2

Ñj
)
+

1

(u−m2
Ñi
)(u−m2

Ñj
)

]
. (6.10.10)

To get the differential cross-section dσ/dt, multiply this by 1/(16πs2):

dσ

dt
=

πα2

4s2W c
2
W

(
tu−m2

ẽL
m2
ẽR

s2

)
4∑

i,j=1

Nj1N
∗
i1(N

∗
j2 +

sW
cW

N∗
j1)(Ni2 +

sW
cW

Ni1)

[
1

(t−m2
Ñi
)(t−m2

Ñj
)
+

1

(u−m2
Ñi
)(u−m2

Ñj
)

]
. (6.10.11)

To compare with the original calculation in ref. [171] and with eq. E26, p. 244 in ref. [7], note

that for a pure photino exchange, Ni1 → cW δi1 and Ni2 → sW δi1, so that

1

4s2W c
2
W

|Ni1|2|Ni2 +
sW
cW

Ni1|2 → 1 . (6.10.12)

Also note that in ref. [171] polarized electron beams are assumed. The result checks.
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6.10.2 e−e− → ẽ
−
Rẽ

−
R

For this process, there are again two Feynman graphs, which are related by the exchange of

identical electrons in the initial state or equivalently by exchange of the identical selectrons

in the final state, as shown in Fig. 6.10.2. (We again neglect the electron mass and thus the

higgsino coupling to the electron.) Let the electrons have momenta p1 and p2 and the selectrons

have momenta k1 and k2, so that p21 = p22 = 0; k21 = k22 = m2
ẽR
; s = (p1 + p2)

2; t = (k1 − p1)2;
u = (k1 − p2)2.

ē† (p1, λ1)

ē† (p2, λ2)

ẽ−R (k1)

ẽ−R (k2)

χ0
i

ē† (p2, λ2)

ē† (p1, λ1) ẽ−R (k1)

ẽ−R (k2)

χ0
i

Figure 6.10.2: The two Feynman diagrams for e−e− → ẽ−Rẽ
−
R in the limit where me → 0.

Using the Feynman rules of Fig. K.4.2, the amplitude for the first graph is:

iMt =

(
−i
√
2g
sW
cW

Ni1

)2
[

imÑi

(k1 − p1)2 −m2
Ñi

]
y†1y

†
2 , (6.10.13)

for each exchanged neutralino. The amplitudes for the second graph are the same, but with the

electrons interchanged:

iMu =

(
−i
√
2g
sW
cW

Ni1

)2
[

imÑi

(k1 − p2)2 −m2
Ñi

]
y†1y

†
2 . (6.10.14)

Since we have chosen to write the external state wave function spinors in the same order inMt

andMu, there is no factor of (−1) for Fermi-Dirac statistics. So, applying eq. (2.42), the total

amplitude squared is:

|M|2 = 4g4s4W
c4W

(y†1y
†
2)(y2y1)

∣∣∣∣∣

4∑

i=1

(Ni1)
2mÑi

(
1

t−m2
Ñi

+
1

u−m2
Ñi

)∣∣∣∣∣

2

. (6.10.15)

The sum over the electron spins is obtained from
∑

λ1,λ2

(y†1y
†
2)(y2y1) = Tr[p2 ·σp1 ·σ] = 2p2 ·p1 = s . (6.10.16)

So, using eq. (3.1.59), the spin-averaged differential cross-section is:

dσ

dt
=

(
1

2

)
1

16πs2


1

4

∑

λ1,λ2

|M|2



=
πα2

2c4W s

∣∣∣∣∣

4∑

i=1

(Ni1)
2m

Ñi

(
1

t−m2
Ñi

+
1

u−m2
Ñi

)∣∣∣∣∣

2

. (6.10.17)
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The first factor of (1/2) in eq. (6.10.17) comes from the fact that there are identical sleptons in

the final state and thus the phase space is degenerate.

To compare with [171] and also with eq. E27 of ref. [7], note that for a pure photino

exchange, Ni1 → cW δi1, so it checks.

6.10.3 e−e− → ẽ
−
L ẽ

−
L

Again, in the limit of vanishing electron mass, there are two Feynman graphs, which are related

by the exchange of identical electrons in the initial state or equivalently by exchange of the

identical selectrons in the final state. As shown in Fig. 6.10.3, they are exactly like the previous

example, but with all arrows reversed.

e (p1, λ1)

e (p2, λ2)

ẽ−L (k1)

ẽ−L (k2)

χ0
i

e (p2, λ2)

e (p1, λ1) ẽ−L (k1)

ẽ−L (k2)

χ0
i

Figure 6.10.3: The two Feynman diagrams for e−e− → ẽ−L ẽ
−
L in the limit of vanishing electron

mass.

Using the Feynman rules of Fig. K.4.2, the amplitude for the first graph is:

Mt =

(
i
g√
2
[N∗

i2 +
sW
cW

N∗
i1]

)2
[

imÑi

(p1 − k1)2 −m2
Ñi

]
x1x2 , (6.10.18)

for each exchanged neutralino. The amplitudes for the second graph are the same, but with

p1 ↔ p2:

Mu =

(
i
g√
2
[N∗

i2 +
sW
cW

N∗
i1]

)2
[

imÑi

(p2 − k1)2 −m2
Ñi

]
x1x2 . (6.10.19)

Since we have chosen to write the external state wave function spinors in the same order inM1

andM2, there is no factor of (−1) for Fermi-Dirac statistics. The total amplitude squared is:

|M|2 = g4

4
(x1x2)(x

†
2x

†
1)

∣∣∣∣∣

4∑

i=1

(N∗
i2 +

sW
cW

N∗
i1)

2mÑi

(
1

t−m2
Ñi

+
1

u−m2
Ñi

)∣∣∣∣∣

2

. (6.10.20)

The average over the electron spins follows from eq. (3.1.58):

∑

λ1,λ2

(x1x2)(x
†
2x

†
1) = Tr[p2 ·σp1 ·σ] = 2p2 ·p1 = s . (6.10.21)
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So the spin-averaged differential cross-section is:

dσ

dt
=

(
1

2

)
1

16πs2


1

4

∑

λ1,λ2

|M|2



=
πα2

32s4W s

∣∣∣∣∣

4∑

i=1

(N∗
i2 +

sW
cW

N∗
i1)

2mÑi

(
1

t−m2
Ñi

+
1

u−m2
Ñi

)∣∣∣∣∣

2

, (6.10.22)

where the first factor of (1/2) in eq. (6.10.22) comes from the fact that there are identical sleptons

in the final state. To compare with [171] and also with eq. (E27) of ref. [7], note that for a pure

photino exchange, Ni1 → cW δi1 and Ni2 → sW δi1, so it checks.

6.11 e−e+ → ν̃ν̃∗

Consider now the pair production of sneutrinos in electron-positron collisions. There are two

graphs featuring the s-channel exchange of the Z0. We will neglect the electron mass and Yukawa

coupling, so there is only one graph involving the t-channel exchange of the charginos. These

three Feynman diagrams are shown in Fig. 6.11.1, where we have also defined the helicities and

momenta of the particles. The Mandelstam variables can be expressed in terms of the external

momenta and the sneutrino mass:

2p1 ·p2 = s , 2k1 ·k2 = s− 2m2
ν̃ , (6.11.1)

2p1 ·k1 = 2p2 ·k2 = m2
ν̃ − t , 2p1 ·k2 = 2p2 ·k1 = m2

ν̃ − u . (6.11.2)

Using the Feynman rules of Fig. J.1.2, the amplitudes for the two s-channel Z boson exchange

diagrams are:60

iM1 =

[
−i g

2cW
(k1 − k2)µ

] [−igµν
DZ

] [
i
g

cW
(s2W − 1

2)

]
x1σνy

†
2 , (6.11.3)

iM2 =

[
−i g

2cW
(k1 − k2)µ

] [−igµν
DZ

] [
i
gs2W
cW

]
y†1σνx2 , (6.11.4)

where the first factor in each case is the Feynman rule from the Z boson coupling to the

sneutrinos (see Fig. 72c, ref. [7]), and DZ ≡ s−m2
Z + iΓZmZ is the denominator of the Z boson

propagator.61 The t-channel diagram due to each chargino gives a contribution

iM3 = (−igV ∗
i1) (−igVi1) x1

[
i(k1 − p1)·σ

(k1 − p1)2 −m2
C̃i

]
y†2, (6.11.5)

using the rules of Fig. K.4.1. Therefore, the total amplitude can be rewritten as:

M = c1x1(k1 − k2)·σy†2 + c2y
†
1(k1 − k2)·σx2 + c3x1(k1 − p1)·σy†2 , (6.11.6)

60Because we neglect the electron mass, we may drop the QµQν term of the Z propagator, where Q ≡ p1 + p2
is the propagating four-momentum in the s-channel [cf. Fig. 4.2.5].

61The explicit inclusion of the finite decay width in the propagator of an unstable particle involves subtle issues
of gauge invariance and unitarity, particularly in higher loop computations. The authors of ref. [172] recommend
the complex-mass scheme for perturbative calculations with unstable particles, first introduced in ref. [173].

95



e(p1, λ1)

e†(p2, λ2)

ν̃(k1)

ν̃∗(k2)

Z0

ē†(p1, λ1)

ē(p2, λ2)

ν̃(k1)

ν̃∗(k2)

Z0

e (p1, λ1)

e† (p2, λ2)

ν̃ (k1)

ν̃∗ (k2)

χ+
i

Figure 6.11.1: The Feynman diagrams for e−e+ → ν̃ν̃∗.

where

c1 ≡
g2(1− 2s2W )

4c2WDZ
, c2 ≡ −

g2s2W
2c2WDZ

, c3 ≡ g2
2∑

i=1

|Vi1|2
m2
C̃j
− t . (6.11.7)

Squaring the amplitude and summing over the electron and positron spins, the interference

terms involving c2 will vanish in the massless electron limit due to eqs. (3.1.60) and (3.1.61).

Therefore, we obtain

∑

λ1,λ2

|M|2 =
∑

λ1,λ2

{
|c1|2 x1(k1 − k2)·σy†2 y2(k1 − k2)·σx

†
1 + |c2|2 y

†
1(k1 − k2)·σx2 x

†
2(k1 − k2)·σy1

+c23 x1(k1 − p1)·σy†2 y2(k1 − p1)·σx
†
1 + 2Re[c1c3 x1(k1 − k2)·σy†2 y2(k1 − p1)·σx

†
1]

}

= |c1|2 Tr[(k1 − k2)·σp2 ·σ(k1 − k2)·σp1 ·σ] + |c2|2 Tr[(k1 − k2)·σp2 ·σ(k1 − k2)·σp1 ·σ]

+c23 Tr[(k1 − p1)·σp2 ·σ(k1 − p1)·σp1 ·σ] + 2Re[c1]c3 Tr[(k1 − k2)·σp2 ·σ(k1 − p1)·σp1 ·σ],

(6.11.8)

where we have used eqs. (3.1.58) and (3.1.59) to perform the spin sums. Applying the trace

identities eqs. (2.55) and (2.56) and simplifying the results using eqs. (6.11.1)–(6.11.2) and

u = 2m2
ν̃ − s− t, we get

∑

λ1,λ2

|M|2 = −[st+ (t−m2
ν̃)

2]
(
4|c1|2 + 4|c2|2 + c23 + 4Re[c1]c3

)
. (6.11.9)

When mC̃1
= mC̃2

, this agrees with eqs. (E46)–(E48) of ref. [7]62 and with ref. [174]. The

62There is a typographical error in eq. (E48) of [7]; the right-hand side should be multiplied by 1/cos2 θW .
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differential cross-section follows in the standard way by averaging over the initial state spins:

dσ

dt
=

1

16πs2

(
1

4

∑

λ1,λ2

|M|2
)
. (6.11.10)

Note that

t = m2
ν̃ − 1

2(1− β cos θ)s , β ≡
(
1− 4m2

ν̃

s

)1/2

, (6.11.11)

where θ is the angle between the initial state electron and the final state sneutrino in the center-

of-momentum frame. The upper and lower limits t+ and t− are obtained by inserting cos θ = ±1
above, respectively.

Performing the integration over t to obtain the total cross-section, one obtains

σ =

∫ t+

t−

dσ

dt
dt =

g4

64πs

(
SZ +

2∑

i,j=1

Sij +

2∑

i=1

SZi

)
, (6.11.12)

where

SZ =
β3

24c4W
(8s4W − 4s2W + 1)

s2

|DZ |2
, (6.11.13)

Sii = |Vi1|4 [(1− 2γi)Li − 2β] , (6.11.14)

S12 = S21 = |V11V12|2
{
(m2

C̃2
+ sγ22)L2 − (m2

C̃1
+ sγ21)L1

m2
C̃2
−m2

C̃1

− β
}
, (6.11.15)

SZi =
(2s2W − 1)

c2W
|Vi1|2

[
(m2

C̃i
+ sγ2i )Li + sβ(γi − 1/2)

] (s−m2
Z)

|DZ |2
, (6.11.16)

with

γi ≡
m2
ν̃ −m2

C̃i

s
, Li ≡ ln

(m2
C̃i
− t−

m2
C̃i
− t+

)
. (6.11.17)

This agrees with eqs. (E49)-(E52) of ref. [7] in the limit of degenerate charginos, or of a single

wino chargino with |V11| = 1 and V12 = 0. It also agrees with [174].

6.12 e−e+ → ÑiÑj

Next we consider the pair production of neutralinos via e−e+ annihilation. There are four

Feynman graphs for s-channel Z0 exchange, shown in Fig. 6.12.1, and four for t/u-channel

selectron exchange, shown in Fig. 6.12.2. The momenta and polarizations are as labeled in the

graphs. We denote the neutralino masses as mÑi
,mÑj

and the selectron masses as mẽL and

mẽR . The electron mass will again be neglected. The kinematic variables are then given by

s = 2p1 ·p2 = m2
Ñi

+m2
Ñj

+ 2ki ·kj , (6.12.1)

t = m2
Ñi
− 2p1 ·ki = m2

Ñj
− 2p2 ·kj , (6.12.2)

u = m2
Ñi
− 2p2 ·ki = m2

Ñj
− 2p1 ·kj . (6.12.3)
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Figure 6.12.1: The four Feynman diagrams for e−e+ → ÑiÑj via s-channel Z
0 exchange.

By applying the Feynman rules of Figs. J.1.2 and K.2.1, we obtain for the sum of the

s-channel diagrams in Fig. 6.12.1 [cf. footnote 60],

iMZ =
−igµν
DZ

[
ig(s2W − 1

2 )

cW
x1σµy

†
2 +

igs2W
cW

y†1σµx2

][
ig

cW
O′′L
ij x

†
iσνyj −

ig

cW
O′′L
ji yiσνx

†
j

]
, (6.12.4)

where O′′
ij is given in eq. (K.2.5), andDZ ≡ s−m2

Z+iΓZmZ . The fermion spinors are denoted by

x1 ≡ x(~p1, λ1), y
†
2 ≡ y†(~p2, λ2), x

†
i ≡ x†(~ki, λi), yj ≡ y(~kj , λj), etc. Note that we have combined

the matrix elements of the four diagrams by factorizing with respect to the common boson

propagator. For the four t/u-channel diagrams, we obtain, by applying the rules of Fig. K.4.2:

iM(t)
ẽL

= (−1)
[

i

t−m2
ẽL

][ ig√
2

(
N∗
i2 +

sW
cW

N∗
i1

)][ ig√
2

(
Nj2 +

sW
cW

Nj1

)]
x1yiy

†
2x

†
j , (6.12.5)

iM(u)
ẽL

=

[
i

u−m2
ẽL

][ ig√
2

(
N∗
j2 +

sW
cW

N∗
j1

)][ ig√
2

(
Ni2 +

sW
cW

Ni1

)]
x1yjy

†
2x

†
i , (6.12.6)

iM(t)
ẽR

= (−1)
[

i

t−m2
ẽR

](
−i
√
2g
sW
cW

Ni1

)(
−i
√
2g
sW
cW

N∗
j1

)
y†1x

†
ix2yj, (6.12.7)

iM(u)
ẽR

=

[
i

u−m2
ẽR

](
−i
√
2g
sW
cW

Nj1

)(
−i
√
2g
sW
cW

N∗
i1

)
y†1x

†
jx2yi. (6.12.8)

The first factors of (−1) in each of eqs. (6.12.5) and (6.12.7) are present because the order of the

spinors in each case is an odd permutation of the ordering (1, 2, i, j) established by the s-channel

contribution. The other contributions have spinors in an even permutation of that ordering.

The s-channel diagram contribution of eq. (6.12.4) can be profitably rearranged using the

Fierz identities of eqs. (2.66) and (2.67). Then, combining the result with the t/u-channel and
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Figure 6.12.2: The four Feynman diagrams for e−e+ → ÑiÑj via t/u-channel selectron ex-
change.

s-channel contributions, we have for the total:

M = c1x1yjy
†
2x

†
i + c2x1yiy

†
2x

†
j + c3y

†
1x

†
ix2yj + c4y

†
1x

†
jx2yi, (6.12.9)

where

c1 =
g2

c2W

[
(1− 2s2W )O′′L

ij /DZ − 1
2 (cWNi2 + sWNi1)(cWN

∗
j2 + sWN

∗
j1)/(u−m2

ẽL
)
]
, (6.12.10)

c2 =
g2

c2W

[
(2s2W − 1)O′′L

ji /DZ + 1
2 (cWN

∗
i2 + sWN

∗
i1)(cWNj2 + sWNj1)/(t−m2

ẽL)
]
, (6.12.11)

c3 =
2g2s2W
c2W

[
−O′′L

ij /DZ +Ni1N
∗
j1/(t−m2

ẽR)
]
, (6.12.12)

c4 =
2g2s2W
c2W

[
O′′L
ji /DZ −N∗

i1Nj1/(u−m2
ẽR)
]
. (6.12.13)

Squaring the amplitude and averaging over electron and positron spins, only terms involving

x1x
†
1 or y1y

†
1, and x2x

†
2 or y2y

†
2 survive in the massless electron limit. Thus,

∑

λ1,λ2

|M|2 =
∑

λ1,λ2

(
|c1|2y†jx

†
1x1yjxiy2y

†
2x

†
i + |c2|2y

†
ix

†
1x1yixjy2y

†
2x

†
j

+|c3|2xiy1y†1x
†
iy

†
jx

†
2x2yj + |c4|2xjy1y

†
1x

†
jy

†
ix

†
2x2yi

+2Re
[
c1c

∗
2y

†
ix

†
1x1yjxjy2y

†
2x

†
i

]
+ 2Re

[
c3c

∗
4xjy1y

†
1x

†
iy

†
ix

†
2x2yj

])

= |c1|2y†jp1 ·σyj xip2 ·σx
†
i + |c2|2y

†
i p1 ·σyi xjp2 ·σx

†
j

+|c3|2xip1 ·σx†i y
†
jp2 ·σyj + |c4|2xjp1 ·σx

†
j y

†
i p2 ·σyi

+2Re
[
c1c

∗
2y

†
i p1 ·σyj xjp2 ·σx

†
i

]
+ 2Re

[
c3c

∗
4xjp1 ·σx†i y

†
i p2 ·σyj

]
, (6.12.14)
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after employing the results of eqs. (3.1.58)–(3.1.61).

We now perform the remaining spin sums using eqs. (3.1.58)–(3.1.61) again, obtaining:

∑

λ1,λ2,λi,λj

|M|2 = |c1|2Tr[p1 ·σkj ·σ]Tr[p2 ·σki ·σ] + |c2|2Tr[p1 ·σki ·σ]Tr[p2 ·σkj ·σ]

+|c3|2Tr[p1 ·σki ·σ]Tr[p2 ·σkj ·σ] + |c4|2Tr[p1 ·σkj ·σ]Tr[p2 ·σki ·σ]

+2Re[c1c
∗
2]mÑi

mÑj
Tr[p2 ·σp1 ·σ] + 2Re[c3c

∗
4]mÑi

mÑj
Tr[p1 ·σp2 ·σ].(6.12.15)

Applying the trace identity of eq. (2.54) to this yields

∑

spins

|M|2 = (|c1|2 + |c4|2)4p1 ·kj p2 ·ki + (|c2|2 + |c3|2)4p1 ·ki p2 ·kj
+4Re[c1c

∗
2 + c3c

∗
4]mÑi

m
Ñj
p1 ·p2

= (|c1|2 + |c4|2)(u−m2
Ñi
)(u−m2

Ñj
) + (|c2|2 + |c3|2)(t−m2

Ñi
)(t−m2

Ñj
)

+2Re[c1c
∗
2 + c3c

∗
4]mÑi

mÑj
s. (6.12.16)

The differential cross-section then follows:

dσ

dt
=

1

16πs2


1

4

∑

spins

|M|2

 . (6.12.17)

This agrees with the first complete calculation presented in ref. [175]. For the case of pure

photino pair production, i.e. Ni1 → cW δi1 and Ni2 → sW δi1 and for degenerate selectron

masses this also agrees with eq. (E9) of the erratum of [7]. Other earlier calculations with some

simplifications are given in refs. [176,177].

Defining cos θ = p̂1 ·k̂i (the cosine of the angle between the initial state electron and one of

the neutralinos in the center-of-momentum frame), the Mandelstam variables t, u are given by

t =
1

2

[
m2
Ñi

+m2
Ñj
− s+ λ1/2(s,m2

Ñi
,m2

Ñj
) cos θ

]
, (6.12.18)

u =
1

2

[
m2
Ñi

+m2
Ñj
− s− λ1/2(s,m2

Ñi
,m2

Ñj
) cos θ

]
, (6.12.19)

where the triangle function λ1/2 is defined in eq. (6.1.11). Taking into account the identical

fermions in the final state when i = j, the total cross-section is

σ =
1

1 + δij

∫ t+

t−

dσ

dt
dt , (6.12.20)

where t− and t+ are obtained by inserting cos θ = ∓1 in eq. (6.12.18), respectively.

6.13 Ñ1Ñ1 → ff̄

In this section, we compute the annihilation rate for Ñ1Ñ1 → f f̄ , where f is any kinematically

allowed quark, charged lepton or neutrino. The case of f = e− is the reversed reaction of the
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Figure 6.13.1: The four Feynman diagrams for Ñ1Ñ1 → f f̄ via s–channel Z0 exchange, where
f is a quark or lepton.

process examined in Section 6.12 (with i = j = 1). In R-parity-conserving supersymmetric

models in which Ñ1 is the lightest supersymmetric particle (and hence is stable), the Ñ1Ñ1

annihilation process is relevant for the computation of the neutralino relic density [178]. In

particular, Ñ1Ñ1 → f f̄ can be an important contribution to cold dark matter annihilation

[178–181]. Neutralino dark matter is typically heavier than about 6 GeV [182]; for lighter

neutralinos see ref. [183].

In the computation of the relic density, one computes vrelσann, where σann is the Ñ1Ñ1

annihilation cross-section and vrel is the relative velocity of the two neutralinos in the center-

of-momentum frame. The square of the relative velocity is taken to be its thermal average,

v2rel ≃ 6kBT/mÑ1
[178], which is typically non-relativistic when the temperature is of order the

freeze-out temperature [180] (where the neutralino falls out of thermal equilibrium). Hence, it is

sufficient to compute the annihilation cross-section for Ñ1Ñ1 → f f̄ in the non-relativistic limit.

As in Section 6.12, there are four Feynman graphs for s-channel Z0 exchange, shown in

Fig. 6.13.1. In addition, there are s-channel neutral Higgs exchange graphs, shown in Fig. 6.13.2,

that yield contributions to the annihilation amplitude proportional to the fermion mass, mf .
63

Likewise, as in Section 6.12, there are four Feynman graphs for t/u-channel f̃L and f̃R exchange,

shown in Fig. 6.13.3. However, because we do not set mf to zero, four additional t/u-channel

graphs contribute, shown in Fig. 6.13.4, that are sensitive to the higgsino components of the

neutralino.

63In regions of parameter space where mÑ1
≃ 1

2
mZ or mÑ1

≃ 1
2
mφ0 (where φ0 = h0, H0 or A0), the resonant

2 → 1 annihilation Ñ1Ñ1 → Z0 or Ñ1Ñ1 → φ0 dominates the 2 → 2 annihilation processes considered here.
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Figure 6.13.2: Feynman diagrams for Ñ1Ñ1 → f f̄ via s–channel Higgs exchange. There are
four diagrams for each possible neutral Higgs state φ0 = h0, H0 and A0.

The neutralino and the final state fermion four-momenta and polarizations are as labeled

in the Feynman graphs. In the center-of-momentum (CM) frame, the four-momenta are

pµ1 = (E ; ~p) , pµ2 = (E ; −~p) , kµ1 = E(1 ; βk̂) , kµ2 = E(1 ; −βk̂) , (6.13.1)

where

β ≡

√

1−
m2
f

E2
. (6.13.2)

In the non-relativistic limit where |~p| ≪ mÑ1
,

E ≃ mÑ1
+
|~p|2
2m

Ñ1

, (6.13.3)

and the kinematic invariants are given by

s = (p1 + p2)
2 = 4E2 = 4m2

Ñ1
+ 4|~p|2 , (6.13.4)

t = (p1 − k1)2 = m2
Ñ1

+m2
f − 2p1 ·k1 ≃ −m2

Ñ1
+m2

f + 2βm
Ñ1
|~p| cos θ − 2|~p|2 , (6.13.5)

u = (p1 − k2)2 = m2
Ñ1

+m2
f − 2p1 ·k2 ≃ −m2

Ñ1
+m2

f − 2βm
Ñ1
|~p| cos θ − 2|~p|2 , (6.13.6)

where θ is the CM scattering angle. Subsequently, we shall neglect the subdominant O(|~p|)
terms in the t and u-channel propagator denominators by setting t ≃ u ≃ −m2

Ñ1
+m2

f .

By applying the Feynman rules of Figs. J.1.2 and K.2.1, and using the unitary gauge for the

Z-boson propagator, we obtain for the sum of the s-channel Z-exchange diagrams of Fig. 6.13.1,

iMZ =
i
(
−gµν +QµQν/m2

Z

)

DZ

(−ig
cW

)2

O′′L
11

[
x1σµy

†
2−y

†
1σµx2

][
(T f3 −s2WQf )x

†
f1σνyf2−s2WQfyf1σνx

†
f2

]
,

(6.13.7)
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Figure 6.13.3: The four Feynman diagrams for ÑiÑj → f f̄ via t/u–channel f̃L and f̃R ex-

change, where f̃L and f̃R couple to the gaugino components of the neutralino.
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Figure 6.13.4: The four Feynman diagrams for ÑiÑj → f f̄ via t/u–channel f̃L and f̃R ex-

change, where f̃L and f̃R couple to the higgsino components of the neutralino.

where O′′L
11 is given in eq. (K.2.5), DZ ≡ s − m2

Z + iΓZmZ , and Q ≡ p1 + p2 = k1 + k2.

The spinor wave functions are denoted by x1 ≡ x(~p1, λ1), y
†
2 ≡ y†(~p2, λ2), x

†
f1 ≡ x†(~k1, λf1),

yf2 ≡ y(~k2, λf2), etc. In obtaining eq. (6.13.7), we have combined the matrix elements of the

four diagrams by factorizing with respect to the common Z-boson propagator. Note that all
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four terms in eq. (6.13.7) have the same order of spinor wave functions (1,2,f1,f2). Thus, no

additional relative signs arise (beyond the sign associated with the choice of the σ or σ version

of the vertex Feynman rules). One can simplify the terms that originate from the QµQν part

of the Z-boson propagator by writing Qµ = (p1 + p2)
µ and Qν = (k1 + k2)

ν . Contracting the µ

and ν indices with the help of eqs. (3.1.9)–(3.1.12) yields:

(p1 + p2)
µ
[
x1σµy

†
2 − y

†
1σµx2

]
= 2mÑ1

(
x1x2 − y†1y

†
2

)
, (6.13.8)

(k1 + k2)
ν
[
(T f3 − s2WQf )x

†
f1σνyf2 − s2WQfyf1σνx

†
f2

]
= T f3 mf

(
yf1yf2 − x

†
f1x

†
f2

)
. (6.13.9)

Hence, we shall write

MZ ≡M(1)
Z +M(2)

Z , (6.13.10)

where

iM(1)
Z =

−igµν
DZ

(−ig
cW

)2

O′′L
11

[
x1σµy

†
2 − y

†
1σµx2

][
(T f3 − s2WQf )x

†
f1σνyf2 − s2WQfyf1σνx

†
f2

]
,

(6.13.11)

iM(2)
Z =

imfmÑ1

m2
ZDZ

(−ig
cW

)2

O′′L
11 (2T

f
3 )
(
x1x2 − y†1y

†
2

)(
yf1yf2 − x

†
f1x

†
f2

)
. (6.13.12)

Next, we apply the Feynman rules of Figs. K.1.1 and K.3.1 to obtain the sum of the four

s-channel Higgs exchange diagrams (for φ0 = h0, H0 and A0) of Fig. 6.13.2,

iMH=
∑

φ0=h0,H0,A0

i

Dφ0

(
−mf√
2 vf

)[
(Y φ0χ0

1χ
0
1)x1x2 + (Y φ0χ0

1χ
0
1)∗y†1y

†
2

] [
kfφ0yf1yf2 + k∗fφ0x

†
f1x

†
f2

]
,

(6.13.13)

where Y φ0χ0
1χ

0
1 is given by eq. (K.3.1), and Dφ0 ≡ s − m2

φ0 + iΓφ0mφ0 . In addition, we have

introduced the following notation

kfφ0 ≡





kdφ0 , for f = d , e− ,

kuφ0 , for f = u ,

0 , for f = ν ,

vf ≡
{
vd , for f = d , e− ,

vu , for f = u , ν ,
(6.13.14)

where vu, vd are the neutral Higgs vacuum expectation values [cf. eq. (K.1.9)] and kuφ0 and kdφ0

are defined in eqs. (K.1.7) and (K.1.8). As the order of the spinor wave functions is (1, 2, f1, f2)

for all four terms ofMH , no extra minus signs appear.

A good check of the above calculations is to repeat the analysis in the ’t Hooft–Feynman

gauge (where the gauge parameter ξ = 1). In this gauge, MZ = M(1)
Z , since the term pro-

portional to QµQν is absent from the gauge boson propagator. However, we must now include

the diagrams of Fig. 6.13.2 with φ0 = G0. In the ’t Hooft–Feynman gauge, mG0 = mZ and

DG0 = DZ . Moreover, using eqs. (K.1.7) and (K.1.8),

kfG0

vf
=

2iTf
v

. (6.13.15)
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Hence, using eq. (6.13.13) with φ0 = G0,

iMG =
mf√
2 vDZ

(2Tf )Y
G0χ0

1χ
0
1

(
x1x2 − y†1y

†
2

)(
yf1yf2 − x

†
f1x

†
f2

)
, (6.13.16)

where we have noted that iY G0χ0
1χ

0
1 is real. In particular, using eq. (K.3.14) and recalling that

m2
W = m2

Zc
2
W = 1

2g
2v2, we confirm thatMG =M(2)

Z as expected from gauge invariance.

We next evaluate the t/u-channel exchange diagrams shown in Figs. 6.13.3 and 6.13.4. We

neglect f̃L–f̃R mixing. Eight Feynman graphs contribute, and we denote the total invariant

amplitude by:

Mf̃ =
2∑

j=1

(M(tj)

f̃L
+M(uj)

f̃L
+M(tj)

f̃R
+M(uj)

f̃R
) , (6.13.17)

where j = 1, 2 labels the contributions of Figs. 6.13.3 and 6.13.4, respectively, and the other

superscripts (t or u) and subscripts (f̃L or f̃R) indicate the exchange channel and the exchanged

particle, respectively. These matrix elements are evaluated by applying the rules of Fig. K.4.2.

The graphs of Fig. 6.13.3 are sensitive to the gaugino components of Ñ1, and yield

iM(t1)

f̃L
= (−1)

(
−ig
√
2
)2
(

i

t−m2
f̃L

) ∣∣∣∣T
f
3 N12 +

sW
cW

(Qf − T f3 )N11

∣∣∣∣
2

(y†1x
†
f1)(x2yf2) ,(6.13.18)

iM(u1)

f̃L
=
(
−ig
√
2
)2 ∣∣∣∣T

f
3 N12 +

sW
cW

(Qf − T f3 )N11

∣∣∣∣
2
(

i

u−m2
f̃L

)
(x1yf2)(y

†
2x

†
f1) , (6.13.19)

iM(t1)

f̃R
= (−1)

(
i
√
2g
sW
cW

Qf

)2
(

i

t−m2
f̃R

)
|N11|2 (x1yf1)(y

†
2x

†
f2) , (6.13.20)

iM(u1)

f̃R
=

(
i
√
2g
sW
cW

Qf

)2
(

i

u−m2
f̃R

)
|N11|2 (y†1x

†
f2)(x2yf1) . (6.13.21)

The explicit factors of (−1) in eqs. (6.13.18) and (6.13.20) are present because the order of

the spinor wave functions in these cases is an odd permutation of the ordering (1, 2, f1, f2)

established in the computation of the s-channel amplitudes.

The graphs of Fig. 6.13.4 are sensitive to the higgsino components of Ñ1, and yield

iM(t2)

f̃L
= (−1)

(−imf

vf

)2
(

i

t−m2
f̃L

)
|N1f |2 (x1yf1)(y

†
2x

†
f2) , (6.13.22)

iM(u2)

f̃L
=

(−imf

vf

)2
(

i

u−m2
f̃L

)
|N1f |2 (y†1x

†
f2)(x2yf1) , (6.13.23)

iM(t2)

f̃R
= (−1)

(−imf

vf

)2
(

i

t−m2
f̃R

)
|N1f |2 (y†1x

†
f1)(x2yf2) , (6.13.24)

iM(u2)

f̃R
=

(−imf

vf

)2
(

i

u−m2
f̃R

)
|N1f |2 (x1yf2)(y

†
2x

†
f1) , (6.13.25)
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where vf is defined in eq. (6.13.14), and

N1f ≡





N13 , for f = d , e− ,

N14 , for f = u ,

0 , for f = ν .

(6.13.26)

As before, the explicit factors of (−1) are due to the ordering of the spinor wave functions.

It is convenient to write the total matrix element for Ñ1Ñ1 → f f̄ as the sum of products

of separate neutralino and final state fermionic currents. The contributions of the s-channel

diagrams are already in this form. The contributions of the t– and u–channel diagrams given in

eqs. (6.13.18)–(6.13.25) can be rearranged using the Fierz identities of eqs. (2.66)–(2.68),

y†1x
†
f1x2yf2 = −1

2(y
†
1σ

µx2)(x
†
f1σµyf2) , (6.13.27)

x1yf2y
†
2x

†
f1 = −1

2(x1σ
µy†2)(x

†
f1σµyf2) , (6.13.28)

x1yf1y
†
2x

†
f2 = −1

2(x1σ
µy†2)(yf1σµx

†
f2) , (6.13.29)

y†1x
†
f2x2yf1 = −1

2(y
†
1σ

µx2)(yf1σµx
†
f2) . (6.13.30)

Combining the result of the s, t, and u–channel contributions, we have for the total amplitude:

M =
mfmÑ1

m2
Z

c0

(
x1x2 − y†1y

†
2

)(
yf1yf2 − x

†
f1x

†
f2

)

+c1(y
†
1σ

µx2)(x
†
f1σµyf2)+c2(x1σ

µy†2)(x
†
f1σµyf2)+c3(x1σ

µy†2)(yf1σµx
†
f2)+c4(y

†
1σ

µx2)(yf1σµx
†
f2)

+mf

[
c5(x1x2)(yf1yf2) + c6(x1x2)(x

†
f1x

†
f2) + c7(y

†
1y

†
2)(yf1yf2) + c8(y

†
1y

†
2)(x

†
f1x

†
f2)
]
, (6.13.31)

where the coefficients c0 , c1 , . . . , c4 are given by

c0 = −g2
2T f3 O

′′L
11

c2WDZ
, (6.13.32)

c1 = −g2
[
(T f3 − s2WQf )O′′L

11

c2WDZ
+
|T f3 N12 +

sW
cW

(Qf − T f3 )N11|2

t−m2
f̃L

]
−
m2
f

2v2f

(
|N1f |2
t−m2

f̃R

)
, (6.13.33)

c2 = g2

[
(T f3 − s2WQf )O′′L

11

c2WDZ
+
|T f3 N12 +

sW
cW

(Qf − T f3 )N11|2

u−m2
f̃L

]
+
m2
f

2v2f

(
|N1f |2
u−m2

f̃R

)
, (6.13.34)

c3 = −g2
s2W
c2W

Qf

[
O′′L

11

DZ
+
Qf |N11|2
t−m2

f̃R

]
−
m2
f

2v2f

(
|N1f |2
t−m2

f̃L

)
, (6.13.35)

c4 = g2
s2W
c2W

Qf

[
O′′L

11

DZ
+
Qf |N11|2
u−m2

f̃R

]
+
m2
f

2v2f

(
|N1f |2
u−m2

f̃L

)
. (6.13.36)

The coefficients c5, . . . , c8 are obtained from eq. (6.13.13) and represent the s-channel Higgs

exchange contributions to the annihilation matrix element.
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In the non–relativistic limit, |~p| ≪ mÑ1
. Then t ≃ u ≃ −m2

Ñ1
+m2

f , and we can approxi-

mate64 c1 = −c2 and c3 = −c4. Hence, the total amplitude, eq. (6.13.31), can be written as

M =
mfmÑ1

m2
Z

c0

(
x1x2 − y†1y

†
2

)(
yf1yf2 − x

†
f1x

†
f2

)

+
[
y†1σ

µx2 − x1σµy†2
] [
c1(x

†
f1σµyf2)− c3(yf1σµx

†
f2)
]
+MH , (6.13.37)

where the s-channel Higgs exchange contributions, MH , will be neglected for simplicity in the

subsequent analysis. The spin-averaged squared matrix element for Ñ1Ñ1 → f f̄ then takes the

following form:

1
4

∑

s1,s2,sf1,sf2

|MZ +Mf̃ |2 = Nµν

[
|c1|2Fµν1 + |c3|2Fµν2 − 2Re(c1c

∗
3)F

µν
12

]
+
m2
fm

2
Ñ1

m4
Z

|c0|2NF

+
2mfmÑ1

m2
Z

Re[c∗0(c1 + c3)]NµF
µ , (6.13.38)

where Nµν , Nµ and N are spin-averaged tensor, vector and scalar quantities that depend on

the initial state neutralino kinematics and Fµν1,2,12, F
µ and F are spin-summed tensor, vector

and scalar quantities that depend on the final state fermion kinematics. These quantities are

easily computed using the projection operators of eqs. (3.1.58)–(3.1.61) and the standard trace

techniques to perform the spin averages and sums. Explicitly, the spin-averaged neutralino

quantities are

N ≡ 1
4

∑

s1,s2

(x1x2 − y†1y
†
2)(x

†
2x

†
1 − y2y1) = p1 ·p2 +m2

Ñ1
= 2E2 , (6.13.39)

Nµ ≡ 1
4

∑

s1,s2

(y†1σ
µx2 − x1σµy†2)(x

†
2x

†
1 − y2y1) = −mÑ1

(p1 + p2)
µ =





−2mÑ1
E , µ = 0 ,

0 , µ = i ,

(6.13.40)

and a symmetric second-rank tensor,

Nµν ≡ 1
4

∑

s1,s2

(y†1σ
µx2 − x1σµy†2)(x

†
2σ

νy1 − y2σνx†1) = pµ1p
ν
2 + pµ2p

ν
1 − gµν(p1 ·p2 −m2

Ñ1
)

=





2m2
Ñ1
, µ = ν = 0 ,

0 , µ = 0 , ν = j or µ = i , ν = 0 ,

2
[
|~p|2 δij − pipj

]
, µ = i, ν = j ,

(6.13.41)

64In particular, we assume that f̃L and f̃R are significantly heavier than all other particles in the annihilation
process. Consequently, we can ignore all O(|~p|/mf̃L,R

) terms in c1 + c2 and c3 + c4.
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where the final results given in eqs. (6.13.39)–(6.13.41) have been evaluated in the CM frame.

Similarly, the spin-summed final state fermion quantities are

F ≡
∑

sf1,sf2

(yf1yf2 − x
†
f1x

†
f2)(y

†
f2y

†
f1 − xf2xf1) = 4(k1 ·k2 +m2

f ) = 8E2 , (6.13.42)

Fµ ≡
∑

sf1,sf2

(x†f1σ
µyf2)(y

†
f2y

†
f1 − xf2xf1) = −

∑

sf1,sf2

(yf1σ
µx†f2)(y

†
f2y

†
f1 − xf2xf1)

= 2mf (k1 + k2)
µ =





4mfE , µ = 0 ,

0 , µ = i ,

(6.13.43)

after evaluating the above quantities in the CM frame, and

Fµν1 ≡
∑

sf1,sf2

(x†f1σ
µyf2)(y

†
f2σ

νxf1) = k1ρk2λ Tr(σ
ρσµσλσν) , (6.13.44)

Fµν2 ≡
∑

sf1,sf2

(yf1σ
µx†f2)(xf2σ

νy†f1) = k1ρk2λ Tr(σ
ρσµσλσν) , (6.13.45)

Fµν12 ≡
∑

sf1,sf2

(yf1σ
µx†f2)(y

†
f2σ

νxf1) =
∑

sf1,sf2

(x†f1σ
µyf2)(xf2σ

νy†f1) = −m2
f Tr(σ

µσν). (6.13.46)

SinceNµν is symmetric, the antisymmetric parts of Fµν1 and Fµν2 do not contribute in eq. (6.13.38).

The symmetric parts of Fµν1 and Fµν2 are equal and given by:

[Fµν1 ]symm = [Fµν2 ]symm = 2(kµ1 k
ν
2 + kν1k

µ
2 − k1 · k2gµν)

=





2m2
f , µ = ν = 0 ,

0 , µ = 0 , ν = j or µ = i , ν = 0 ,

2m2
f (2k̂

i
k̂
j − δij)− 4E2(k̂

i
k̂
j − δij) , µ = i, ν = j ,

(6.13.47)

and Fµν12 = −2m2
fg
µν . The spin-averaged squared matrix element for Ñ1Ñ1 → f f̄ given by

eq. (6.13.38) can now be fully evaluated, resulting in

1
4

∑

s1,s2,sf1,sf2

|MZ +Mf̃ |2 = 4(|c1|2 + |c3|2)
[
m2
Ñ1
m2
f + 2|~p|2(E2(1 + cos2 θ)−m2

f cos
2 θ)
]

+8m2
f Re(c1c

∗
3)
[
m2
Ñ1
− 2|~p|2

]

+
16m2

fm
2
Ñ1

m4
Z

E2

[
E2|c0|2 −m2

ZRe[c
∗
0(c1 + c3)]

]
, (6.13.48)

where cos θ = ~p·k̂/|~p|. In the non-relativistic limit, we use eq. (6.13.3) and drop terms of

O(|~p|4).
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To compute vrelσann, we make use of the following result for the differential annihilation

cross-section in the CM frame:

vrel

(
dσ

dΩ

)

CM

=
1

32π2s

(
1−

4m2
f

s

)1/2

|M|2ave , (6.13.49)

where |M|2ave is the squared matrix element for the annihilation process, averaged over initial

spins and summed over final spins, and the relative velocity of the initial state neutralinos in

the CM frame is given by vrel = 4|~p|/√s ≃ 2|~p|/mÑ1
, after noting that

√
s ≃ 2mÑ1

in the

non-relativistic limit. Inserting the squared matrix element obtained above into eq. (6.13.49)

and integrating over solid angles, we end up with:

vrelσann =
1

8πE2

(
1−

m2
f

E2

)1/2{
(|c1|2 + |c3|2)

[
m2
Ñ1
m2
f +

2|~p|2
3

(
4m2

Ñ1
−m2

f

)]

+
4m2

fm
2
Ñ1

m4
Z

[
m2
Ñ1

(m2
Ñ1

+ 2|~p|2)|c0|2 −m2
Z(m

2
Ñ1

+ |~p|2)Re[c∗0(c1 + c3)]

]

+2m2
f Re(c1c

∗
3)
[
m2
Ñ1
− 2|~p|2

]
+O(|~p|4)

}
, (6.13.50)

where the effects of the s-channel Higgs boson exchanges have been omitted.

The momentum dependence of eq. (6.13.50) reflects the famous p-wave suppression of the

annihilation cross-section in the mf = 0 limit noted in ref. [178].65 In general, the annihilation

cross-section in the non-relativistic limit behaves as vrel σann ∝ |~p|2ℓ. Applying this result to

eq. (6.13.50) in the mf = 0 limit implies that ℓ = 1. This is a consequence of the Majorana

nature of the neutralino. In particular, in the limit of mf = 0, the f f̄ pair is in a J = 1

angular momentum state. However, Fermi statistics dictates that at threshold, a pair of identical

Majorana fermions in a J = 1 state must have relative orbital angular momentum ℓ = 1

(corresponding to p-wave annihilation). The s-wave annihilation (corresponding to the Majorana

fermion pair in a J = 0 state) is suppressed by a factor of m2
f , as is evident from eq. (6.13.50).

We have checked that eq. (6.13.50) corresponds to a result first obtained in ref. [179] (al-

though the latter reference omits the terms in eq. (6.13.50) proportional to c0). However, we

emphasize that this formula neglects the effects of s-channel Higgs boson exchanges. We in-

vite the reader to complete the computation of the annihilation cross-section by including these

terms (along with the effects of interference between the neglected contributions and the ones

computed above).

65In ref. [178], the annihilation rate for photinos is computed, corresponding to N11 = cW , N12 = sW and
N13 = N14 = 0. In this case, the Z boson and Higgs boson s-channel exchange diagrams are absent. The
result presented in ref. [178] should be multiplied by a factor of two (H. Goldberg, private communication)—the
corrected expression then agrees with eq. (6.13.50).
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The annihilation of Ñ1Ñ1 into heavy quarks (c, b and t), followed by the decay of the heavy

quarks, can yield observable signatures suitable for indirect dark matter detection. For example,

the annihilation of neutralinos in the galaxy provides a possible source of indirect dark matter

detection via the observation of positrons in cosmic rays [184]. Neutralino dark matter can also

be captured in the sun [185]. The neutrinos that arise (either directly or indirectly) from the

neutralino annihilation in the sun can be detected on Earth (see, e.g., ref. [186]).

6.14 e−e+ → C̃−
i C̃+

j

Next we consider the pair production of charginos in electron-positron collisions. The s-channel

Feynman diagrams are shown in Fig. 6.14.1, where we have also introduced the notation for the

fermion momenta and polarizations. The Mandelstam variables are given by

s = 2p1 ·p2 = m2
C̃i

+m2
C̃j

+ 2ki ·kj , (6.14.1)

t = m2
C̃i
− 2p1 ·ki = m2

C̃j
− 2p2 ·kj , (6.14.2)

u = m2
C̃i
− 2p2 ·ki = m2

C̃j
− 2p1 ·kj . (6.14.3)

Note that the negatively charged chargino carries momentum and polarization (ki, λi), while the

positively charged one carries (kj , λj).

Using the Feynman rules of Figs. J.1.2 and K.2.1, the sum of the photon-exchange diagrams

is given by:

iMγ =
−igµν
s

(
−ie x1σµy†2 − ie y

†
1σµx2

)(
ie δijyiσνx

†
j + ie δijx

†
iσνyj

)
. (6.14.4)

e (p1, λ1)

e† (p2, λ2)

χ−
i (ki, λi)

χ−†
j (kj , λj)

γ, Z0

ē† (p1, λ1)

ē (p2, λ2)

χ−
i (ki, λi)

χ−†
j (kj , λj)

γ, Z0

e (p1, λ1)

e† (p2, λ2)

χ+ †
i (ki, λi)

χ+
j (kj , λj)

γ, Z0

ē† (p1, λ1)

ē (p2, λ2)

χ+ †
i (ki, λi)

χ+
j (kj , λj)

γ, Z0

Figure 6.14.1: Feynman diagrams for e−e+ → C̃−
i C̃

+
j via s-channel γ and Z0 exchange.
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e (p1, λ1)

e† (p2, λ2)

χ+ †
i (ki, λi)

χ−†
j (kj , λj)

ν̃e

Figure 6.14.2: The Feynman diagram for e−e+ → C̃−
i C̃

+
j via the t-channel exchange of a

sneutrino.

The Z-exchange diagrams yields [cf. footnote 60]:

iMZ =
−igµν
DZ

[ ig
cW

(s2W − 1
2)x1σµy

†
2 +

igs2W
cW

y†1σµx2
][
− ig

cW
O′L
ji yiσνx

†
j −

ig

cW
O′R
ji x

†
iσνyj

]
,

(6.14.5)

where DZ ≡ s−m2
Z+ iΓZmZ . The t-channel Feynman diagram via sneutrino exchange is shown

in Fig. 6.14.2. Applying the rules of Fig. K.4.1, we find:

iMν̃e = (−1) i

t−m2
ν̃e

(−igV ∗
i1x1yi)

(
−igVj1y†2x

†
j

)
. (6.14.6)

The Fermi-Dirac factor (−1) in this equation arises because the spinors appear an order which

is an odd permutation of the order used in all of the s-channel diagram results.

One can now apply the Fierz transformation identities eqs. (2.66)–(2.68) to eqs. (6.14.4)

and (6.14.5) to remove the σ and σ matrices. The result can be combined with the t-channel

contribution to obtain a total matrix elementM with exactly the same form as eq. (6.12.9), but

now with:

c1 = 2
e2δij
s
− g2

c2WDZ
(1− 2s2W )O′R

ji , (6.14.7)

c2 =
2e2δij
s
− g2

c2WDZ
(1− 2s2W )O′L

ji +
g2V ∗

i1Vj1
t−m2

ν̃e

, (6.14.8)

c3 =
2e2δij
s

+
2g2s2W
c2WDZ

O′R
ji , (6.14.9)

c4 =
2e2δij
s

+
2g2s2W
c2WDZ

O′L
ji . (6.14.10)

The rest of this calculation is identical in form to eqs. (6.12.9)–(6.12.16), so that the result is:

∑

spins

|M|2 = (|c1|2 + |c4|2)(u−m2
C̃i
)(u−m2

C̃j
) + (|c2|2 + |c3|2)(t−m2

C̃i
)(t−m2

C̃j
)

+2Re[c1c
∗
2 + c3c

∗
4]mC̃i

mC̃j
s . (6.14.11)

The differential cross-section then follows:

dσ

dt
=

1

16πs2


1

4

∑

spins

|M|2

 . (6.14.12)
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As in the previous subsection, we define cos θ = p̂1 ·k̂i (where θ is the angle between the initial

state electron and C̃−
i in the center-of-momentum frame). The Mandelstam variables t, u are

given by

t =
1

2

[
m2
C̃i

+m2
C̃j
− s+ λ1/2(s,m2

C̃i
,m2

C̃j
) cos θ

]
, (6.14.13)

u =
1

2

[
m2
C̃i

+m2
C̃j
− s− λ1/2(s,m2

C̃i
,m2

C̃j
) cos θ

]
. (6.14.14)

The total cross-section can now be computed as

σ =

∫ t+

t−

dσ

dt
dt , (6.14.15)

where t− and t+ are obtained with cos θ = −1 and +1 in eq. (6.14.13), respectively. Our results

agree with the original first complete calculation in ref. [187]. Earlier work with simplifying

assumptions is given in ref. [188]. An extended calculation for the production of polarized

charginos is given in [189].

6.15 ud̄ → C̃+

i Ñj

Next we consider the associated production of a chargino and a neutralino in quark, anti-quark

collisions. The leading order Feynman diagrams are shown in Fig. 6.15.1, where we have also

defined the momenta and the helicities. The corresponding Mandelstam variables are

s = 2p1 ·p2 = m2
C̃i

+m2
Ñj

+ 2ki ·kj, (6.15.1)

t = m2
C̃i
− 2p1 ·ki = m2

Ñj
− 2p2 ·kj, (6.15.2)

u = m2
C̃i
− 2p2 ·ki = m2

Ñj
− 2p1 ·kj. (6.15.3)

The matrix elements for the s-channel diagrams are obtained by applying the Feynman

rules of Figs. J.1.2 and K.2.2:

iMs =
−igµν
s−m2

W

(
ig√
2
x1σµy

†
2

)(
igOL∗ji x

†
iσνyj + igOR∗ji yiσνx

†
j

)
. (6.15.4)

The external spinors are denoted by x1 ≡ x(~p1, λ1), y
†
2 ≡ y†(~p2, λ2), x

†
i ≡ x†(~ki, λi), yj ≡

y(~kj, λj), etc. The matrix elements for the t and u channel graphs follow from the rules of

Figs. K.4.1 and K.4.2:

iMt = (−1) i

t−m2
d̃L

(−igU∗
i1)
( ig√

2

[
Nj2 −

sW
3cW

Nj1

])
x1yiy

†
2x

†
j , (6.15.5)

iMu =
i

u−m2
ũL

(−igVi1)
( ig√

2

[
−N∗

j2 −
sW
3cW

N∗
j1

])
x1yjy

†
2x

†
i . (6.15.6)

The first factor of (−1) in eq. (6.15.5) is required because the order of the spinors (1, i, 2, j) is

in an odd permutation of the order (1, 2, i, j) used in the s-channel and u-channel results.
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u (p1, λ1)

d† (p2, λ2)

χ+
i (ki, λi)

χ0 †
j (kj , λj)

W+

u (p1, λ1)

d† (p2, λ2)

χ−†
i (ki, λi)

χ0
j (kj , λj)

W+

u (p1, λ1)

d† (p2, λ2)

χ−†
i (ki, λi)

χ0
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Figure 6.15.1: The four tree-level Feynman diagrams for ud̄→ C̃+
i Ñj .

Now we can use the Fierz relations eqs. (2.66) and (2.68) to rewrite the s-channel amplitude

in a form without σ or σ matrices. Combining the result with the t-channel and u-channel

contributions yields a totalM with exactly the same form as eq. (6.12.9), but now with

c1 = −
√
2g2

[
OL∗ji

s−m2
W

+

(
1

2
N∗
j2 +

sW
6cW

N∗
j1

)
Vi1

u−mũL

]
, (6.15.7)

c2 = −
√
2g2

[
OR∗ji

s−m2
W

+

(
1

2
N∗
j2 −

sW
6cW

N∗
j1

)
U∗
i1

t−md̃L

]
, (6.15.8)

c3 = c4 = 0. (6.15.9)

The rest of this calculation is identical in form to that of eqs. (6.12.9)–(6.12.16), leading to:

∑

spins

|M|2 = |c1|2(u−m2
C̃i
)(u−m2

Ñj
) + |c2|2(t−m2

C̃i
)(t−m2

Ñj
) + 2Re[c1c

∗
2]mC̃i

mÑj
s. (6.15.10)

From this, one can obtain:

dσ

dt
=

1

16πs2


 1

3 · 4
∑

spins

|M|2

 , (6.15.11)

where we have included a factor of 1/3 from the color average for the incoming quarks. As in

the previous two subsections, eq. (6.15.11) can be expressed in terms of the angle between the

u quark and the chargino in the center-of-momentum frame, using

t =
1

2

[
m2
C̃i

+m2
Ñj
− s+ λ1/2(s,m2

C̃i
,m2

Ñj
) cos θ

]
, (6.15.12)

u =
1

2

[
m2
C̃i

+m2
Ñj
− s− λ1/2(s,m2

C̃i
,m2

Ñj
) cos θ

]
. (6.15.13)
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This process occurs in proton-antiproton and proton-proton collisions, where
√
s is not fixed,

and the angle θ is different than the lab frame angle. The observable cross-section depends

crucially on experimental cuts. Our result in eq. (6.15.11) agrees with the complete computation

in ref. [190]. Earlier calculations in special supersymmetric scenarios, e.g. with photino mass

eigenstates, are given in refs. [177,191].

6.16 Ñi → ÑjÑkÑℓ

Next we consider the decay of a neutralino Ñi to three lighter neutralinos: Ñj, Ñk, Ñℓ. To the

best of our knowledge, this process has not been computed in the literature. This decay is

not likely to be phenomenologically relevant, because a variety of two-body decay modes will

always be available. Furthermore, the calculation itself is quite complicated because of the large

number of Feynman diagrams involved. Therefore, we consider this only as a matter-of-principle

example of a process with four external state Majorana fermions, and will restrict ourselves to

writing down the contributing matrix element amplitudes.

At tree level, the decay can proceed via a virtual Z0 boson; the Feynman graphs are shown

in Fig. 6.16.1. In addition, it can proceed via the exchange of any of the neutral scalar Higgs

bosons of the MSSM, φ0 = h0,H0, A0, as shown in Fig. 6.16.2. Since any of the final state

neutralinos can directly couple to the initial state neutralino there are two more diagrams for

each one shown in Figs. 6.16.1 and 6.16.2, for a total of 48 tree-level diagrams (counting each

intermediate Higgs boson state as distinct). In all cases, the four-momenta of the neutralinos

χ0
i

χ0
k

χ0 †
ℓ

χ0
j

Z0

χ0
i

χ0 †
k

χ0
ℓ

χ0
j

Z0

χ0 †
i χ0

k

χ0 †
ℓ

χ0 †
j

Z0

χ0 †
i

χ0 †
k

χ0
ℓ

χ0 †
j

Z0

Figure 6.16.1: Four Feynman diagrams for Ñi → ÑjÑkÑℓ in the MSSM via Z0 exchange.

There are four more where Ñj ↔ Ñk and another four where Ñj ↔ Ñℓ.
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ℓ
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ℓ
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j

h0,H0, A0

χ0 †
i χ0

k

χ0
ℓ

χ0
j

h0,H0, A0

Figure 6.16.2: Four Feynman diagrams for Ñi → ÑjÑkÑℓ in the MSSM via φ0 = h0, H0, A0

exchange. There are four more where Ñj ↔ Ñk and another four where Ñj ↔ Ñℓ.

Ñi, Ñj, Ñk, Ñℓ are denoted pi, kj , kk, kℓ respectively.

We obtain the sum of the four diagrams in Fig. 6.16.1 by implementing the rules of

Fig. K.2.1, and using the ’t Hooft-Feynman gauge:

iM(1)
Z =

−ig2/c2W
(pi − kj)2 −m2

Z

(
O′′L
ji xiσµx

†
j −O′′L

ij y
†
iσµyj

)(
O′′L
kℓ x

†
kσ

µyℓ −O′′L
ℓk ykσ

µx†ℓ

)
. (6.16.1)

The external wave functions are xi ≡ x(~pi, λi), xj,k,ℓ ≡ x(~kj,k,ℓ, λj,k,ℓ), and analogously for

x†i,j,k,ℓ, and yi,j,k,ℓ and y
†
i,j,k,ℓ. Note that we have factorized the sum of the four diagrams, taking

advantage of the common virtual boson line propagator. By a judicious use of the σ or σ version

of the vertex rule, we have ensured that the order of the four spinor wave functions is the same

for each of the four diagrams. Hence, no additional relative minus signs are required.

The contributions from the diagrams related to these by permutations can now be obtained

from the appropriate substitutions (j ↔ k) and (j ↔ ℓ):

iM(2)
Z = (−1) −ig2/c2W

(pi − kk)2 −m2
Z

(
O′′L
ki xiσµx

†
k −O′′L

ik y
†
iσµyk

)(
O′′L
jℓ x

†
jσ
µyℓ −O′′L

ℓj yjσ
µx†ℓ

)
, (6.16.2)

iM(3)
Z = (−1) −ig2/c2W

(pi − kℓ)2 −m2
Z

(
O′′L
ℓi xiσµx

†
ℓ −O′′L

iℓ y
†
iσµyℓ

)(
O′′L
kj x

†
kσ

µyj −O′′L
jk ykσ

µx†j

)
. (6.16.3)

The first factors of (−1) in iM(2)
Z and iM(3)

Z are present because the order of the spinors in each

case appear in an odd permutation of the canonical order set by iM(1)
Z . Note that if we were

to proceed to a computation of the decay rate, the very first step would be to apply the Fierz

relations of eqs. (2.66)–(2.68) to eliminate all of the σ and σ matrices in the above amplitudes.
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The diagrams in Fig. 6.16.2 combine to give a contribution:

iM(1)
φ0

=
−i

(pi − kj)2 −m2
φ0
(Y ijxiyj + Yijy

†
ix

†
j)(Y

kℓykyℓ + Ykℓx
†
kx

†
ℓ) , (6.16.4)

where we have used the Feynman rules of Fig. K.3.1, and adopted the shorthand notation

Y ij = (Yij)
∗ = Y φ0χ0

iχ
0
j . Again we have factored the amplitude using the common virtual boson

propagator. As in the Z-exchange diagrams, the other contributions can be obtained by the

appropriate substitutions:

iM(2)
φ0

= (−1) −i
(pi − kk)2 −m2

φ0
(Y ikxiyk + Yiky

†
ix

†
k)(Y

jℓyjyℓ + Yjℓx
†
jx

†
ℓ) , (6.16.5)

iM(3)
φ0

= (−1) −i
(pi − kℓ)2 −m2

φ0
(Y iℓxiyℓ + Yiℓy

†
ix

†
ℓ)(Y

kjykyj + Ykjx
†
kx

†
j) . (6.16.6)

The first factors of (−1) in iM(2)
φ0

and iM(3)
φ0

are needed because the spinors in each case are in

an odd permutation of the canonical order established earlier.

The total matrix element is obtained by adding all the contributing diagrams:

M =

3∑

n=1

M(n)
Z +

∑

φ0

3∑

n=1

M(n)
φ0
. (6.16.7)

Squaring the matrix element, dividing by 2MÑi
, and integrating over phase space yields the

total decay rate. Note that final states differing by the interchange of identical particles must

be considered as a single state, counted once [38]. Given an N -body final state made up of νr

particles of type r (where r ≤ N), we define a statistical factor S,

S =
∏

r

νr! , where
∑

r

νr = N . (6.16.8)

Then, in computing the total decay rate, the integration over the total phase space must be

divided by S to avoid over-counting. In the present example, N = 3 with S = 2 [or S = 6] in

the case of two [or three] identical neutralinos in the final state, respectively

6.17 Three-body slepton decays ℓ̃−R → ℓ−τ± τ̃∓
1 for ℓ = e, µ

We next consider the three-body decays of sleptons through a virtual neutralino. The usual as-

sumption in supersymmetric phenomenology is that these decays will have a very small branching

fraction, because a two-body decay to a lighter neutralino and lepton is always open. However,

in Gauge Mediated Supersymmetry Breaking models with a non-minimal messenger sector, the

sleptons can be lighter than the lightest neutralino [192, 193]. In that case, the mostly R-type

smuon and selectron, µ̃R and ẽR, will decay by ℓ̃−R → ℓ−τ±τ̃∓1 . The lightest stau mass eigenstate,

τ̃±1 , is a mixture of the weak eigenstates τ̃±L and τ̃±R , as described in Appendix K.4:

τ̃−1 = R∗
τ̃1 τ̃

−
R + L∗

τ̃1 τ̃
−
L , (6.17.1)
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Figure 6.17.1: Feynman diagrams for the three-body slepton decays ℓ̃−R → ℓ−τ+τ̃−1 (top row)

and ℓ̃−R → ℓ−τ−τ̃+1 (bottom row) in the MSSM.

and τ̃+1 = (τ̃−1 )∗, while the µ̃R and ẽR are taken to be unmixed.

First consider the decay ℓ̃−R → ℓ−τ+τ̃−1 , which proceed by the diagrams in the top row of

Fig. 6.17.1. The momenta and polarizations of the particles are also indicated on the diagram.

Using the Feynman rules of Fig. K.4.4, we find that the amplitudes of these two diagrams, for

each neutralino Ñj exchanged, are:

iM1 = (−iaℓ̃∗j )(−iaτ̃j ) y1
[ −i(p− k1)·σ
(p − k1)2 −m2

Ñj

]
x†2, (6.17.2)

iM2 = (−iaℓ̃∗j )(−ibτ̃j ) y1
[ imÑj

(p− k1)2 −m2
Ñj

]
y2. (6.17.3)

where

aℓ̃j =
√
2g′Nj1, (6.17.4)

aτ̃j = YτNj3L
∗
τ̃1 +
√
2g′Nj1R

∗
τ̃1 , (6.17.5)

bτ̃j = YτN
∗
j3R

∗
τ̃1 −

1√
2
(gN∗

j2 + g′N∗
j1)L

∗
τ̃1 . (6.17.6)

The spinor wave function factors are y1 = y(~k1, λ1), y2 = y(~k2, λ2), and x
†
2 = x†(~k2, λ2).

In the following, we will use the kinematic variables

zℓ ≡ 2p·k1/m2
ℓ̃R

= 2Eℓ/mℓ̃R
, zτ ≡ 2p·k2/m2

ℓ̃R
= 2Eτ/mℓ̃R

, (6.17.7)

rÑj ≡ mÑj
/mℓ̃R

, rτ̃ ≡ mτ̃1/mℓ̃R
, (6.17.8)

rτ ≡ mτ/mℓ̃R
, rℓ ≡ mℓ/mℓ̃R

. (6.17.9)
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The total amplitude then can be written as

M =
4∑

j=1

[
cjy1(p− k1)·σx†2 + djy1y2

]
, (6.17.10)

where

cj = −aℓ̃∗j aτ̃j /[m2
ℓR
(r2
Ñj
− 1 + zℓ)], (6.17.11)

dj = aℓ̃∗j b
τ̃
jmÑj

/[m2
ℓR
(r2
Ñj
− 1 + zℓ)]. (6.17.12)

We consistently neglect the electron and muon masses and Yukawa couplings (so rℓ = 0) in the

matrix elements, but not below in the kinematic integration over phase space, where the muon

mass can be important.

Using eqs. (2.42) and (2.43), we find

|M|2 =
∑

j,k

[
cjc

∗
k y1(p− k1)·σx†2 x2(p − k1)·σy

†
1 + djd

∗
ky1y2 y

†
2y

†
1

+cjd
∗
ky1(p − k1)·σx†2 y

†
2y

†
1 + c∗jdkx2(p− k1)·σy†1 y1y2

]
. (6.17.13)

Summing over the lepton spins using eqs. (3.1.58)–(3.1.61) gives

∑

λ1,λ2

|M|2 =
∑

j,k

[
cjc

∗
kTr[(p− k1)·σk2 ·σ(p− k1)·σk1 ·σ] + djd

∗
kTr[k2 ·σk1 ·σ]

−cjd∗kmτTr[(p− k1)·σk1 ·σ]− c∗jdkmτTr[(p − k1)·σk1 ·σ]
]
. (6.17.14)

Taking the traces using eqs. (2.54) and (2.55) yields

∑

spins

|M|2 =
∑

j,k

{
cjc

∗
k[4k1 ·(p − k1)k2 ·(p− k1)− 2k1 ·k2(p− k1)2] + 2djd

∗
kk1 ·k2

−4Re[cjd∗k]mτk1 ·(p− k1)
}

=
∑

j,k

{
cjc

∗
km

4
ℓ̃R
[(1− zℓ)(1 − zτ )− r2τ̃ + r2τ ]

+djd
∗
km

2
ℓ̃R
(zℓ + zτ − 1 + r2τ̃ − r2τ )− 2Re[cjd

∗
k]mτm

2
ℓ̃R
zℓ

}
. (6.17.15)

The differential decay rate for ℓ̃−R → ℓ−τ+τ̃−1 then follows:

d2Γ

dzℓdzτ
=

mℓ̃R

256π3

(∑

spins

|M|2
)
. (6.17.16)

The total decay rate in that channel can be found by integrating over zℓ, zτ , with the limits (see

for example ref. [164]):

2rℓ < zℓ < 1 + r2ℓ − (rτ + rτ̃ )
2, (6.17.17)

(zτ )min < zτ < (zτ )max , (6.17.18)
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where

(zτ )min ,max =
1

2(1− zℓ + r2ℓ )

[
(2−zℓ)(1+r2ℓ +r2τ −r2τ̃−zℓ)∓(z2ℓ −4r2ℓ )

1/2λ1/2(1+r2ℓ −zℓ, r2τ , r2τ̃ )
]
,

(6.17.19)

and the triangle function λ1/2 is defined in eq. (6.1.11).

Now we turn to the competing decay ℓ̃−R → ℓ−τ−τ̃+1 , with diagrams appearing in the bottom

row of Fig. 6.17.1. By appealing again to the Feynman rules of Fig. K.4.3, we find that the

amplitude has exactly the same form as in eqs. (6.17.2) and (6.17.3), except now with aτ̃j ↔ bτ̃∗j .

Therefore, the entire previous calculation goes through precisely as before, but now with

cj =
−aℓ̃∗j bτ̃∗j

m2
ℓR
(r2
Ñj
− 1 + zℓ)

, (6.17.20)

dj =
aℓ̃∗j a

τ̃∗
j mÑj

m2
ℓR
(r2
Ñj
− 1 + zℓ)

. (6.17.21)

The differential decay widths found above can be integrated to find the total decay widths. The

results agree with ref. [194], except that the signs of the coefficient c
(3)
ij and c

(4)
ij in the published

version of that paper are incorrect; the arXiv eprint version has been corrected. (Also, the

notations for the sfermion mixing angle are different in that paper.) If mℓ̃R
−mτ̃1 −mτ is not

too large, the resulting decays can have a macroscopic length in a detector, and the ratio of the

two decay modes can provide an interesting probe of the supersymmetric Lagrangian.

6.18 Neutralino decay to photon and Goldstino: Ñi → γG̃

The Goldstino G̃ is a massless Weyl fermion that couples to the neutralino and photon fields

according to the non-renormalizable Lagrangian term [195]:

L = −ai
2
(χ0
iσ

µσρσν∂µG̃
†) (∂νAρ − ∂ρAν) + h.c. (6.18.1)

Here χ0
i is the left-handed two-component fermion field that corresponds to the neutralino Ñi

particle, G̃ is the two-component fermion field corresponding to the (nearly) massless Goldstino,

and the effective coupling is

ai ≡
1√
2〈F 〉

(N∗
i1 cos θW +N∗

i2 sin θW ), (6.18.2)

where Nij the mixing matrix for the neutralinos [see eq. (K.2.8)], and 〈F 〉 is the F -term ex-

pectation value associated with supersymmetry breaking. Therefore Ñi can decay to γ plus G̃

through the diagrams shown in Fig. 6.18.1, with amplitudes:

iM1 = i
ai
2
xÑkG̃ ·σ (ε∗ ·σ kγ ·σ − kγ ·σ ε∗ ·σ) x

†
G̃
, (6.18.3)

iM2 = −i
a∗i
2
y†
Ñ
kG̃ ·σ (ε∗ ·σ kγ ·σ − kγ ·σ ε∗ ·σ) yG̃ . (6.18.4)
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χ0
i (p, λÑ )
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χ0 †
i (p, λÑ )

G̃† (kG̃, λG̃)

γ (kγ , λγ)

Figure 6.18.1: The two Feynman diagrams for Ñi → γG̃ in supersymmetric models with a
light Goldstino.

Here xÑ ≡ x(~p, λÑ ), y
†
Ñ
≡ y†(~p, λÑ ), and x

†
G̃
≡ x†(~kG̃, λG̃), yG̃ ≡ y(~kG̃, λG̃), and ε∗ = ε∗(~kγ , λγ)

are the external wave function factors for the neutralino, Goldstino, and photon, respectively. Us-

ing the on-shell condition kγ ·ε∗ = 0, we have kγ ·σε∗ ·σ = −ε∗ ·σkγ ·σ and kγ ·σε∗ ·σ = −ε∗ ·σkγ ·σ
from eqs. (2.50) and (2.51). So we can rewrite the total amplitude as

M =M1 +M2 = xÑAx
†
G̃
+ y†

Ñ
ByG̃ , (6.18.5)

where

A = ai kG̃ ·σ ε∗ ·σ kγ ·σ, (6.18.6)

B = −a∗i kG̃ ·σ ε∗ ·σ kγ ·σ. (6.18.7)

The complex square of the matrix element is therefore

|M|2 = xÑAx
†
G̃
xG̃Âx

†
Ñ
+ y†

Ñ
ByG̃y

†
G̃
B̂yÑ + xÑAx

†
G̃
y†
G̃
B̂yÑ + y†

Ñ
ByG̃xG̃Âx

†
Ñ
, (6.18.8)

where Â and B̂ are obtained from A and B by reversing the order of the σ and σ matrices and

taking the complex conjugates of ai and ε [cf. eq. (4.4.4) and the associated text].

Summing over the Goldstino spins using eqs. (3.1.58)–(3.1.61) now yields:

∑

λG̃

|M|2 = xÑAkG̃ ·σÂx
†
Ñ
+ y†

Ñ
BkG̃ ·σB̂yÑ . (6.18.9)

(The A, B̂ and Â, B cross terms vanish because of mG̃ = 0.) Averaging over the neutralino spins

using eqs. (3.1.58) and (3.1.59), we find

1

2

∑

λÑ ,λG̃

|M|2 = 1

2
Tr[AkG̃ ·σÂp·σ] +

1

2
Tr[BkG̃ ·σB̂p·σ]

=
1

2
|ai|2Tr[ε∗ ·σ kγ ·σ kG̃ ·σ kγ ·σ ε·σ kG̃ ·σ p·σ kG̃ ·σ] + (σ ↔ σ). (6.18.10)

We now use

kγ ·σ kG̃ ·σ kγ ·σ = 2kG̃ ·kγ kγ ·σ, (6.18.11)

kG̃ ·σ p·σ kG̃ ·σ = 2kG̃ ·p kG̃ ·σ, (6.18.12)
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which follow from eq. (2.52), and the corresponding identities with σ ↔ σ, to obtain:

1

2

∑

λÑ ,λG̃

|M|2 = 2|ai|2(kG̃ ·kγ)(kG̃ ·p)Tr[ε∗ ·σ kγ ·σ ε·σ kG̃ ·σ] + (σ ↔ σ). (6.18.13)

Applying the photon spin-sum identity
∑

λγ

εµεν∗ = −gµν , (6.18.14)

and the trace identities eq. (2.55) and (2.56), we get

1

2

∑

λγ ,λÑ ,λG̃

|M|2 = 16|ai|2(kG̃ ·kγ)2(kG̃ ·p) = 2|ai|2m6
Ñi
. (6.18.15)

So, the decay rate is [192,196]:

Γ(Ñi → γG̃) =
1

16πm
Ñi


1

2

∑

λγ ,λÑ ,λG̃

|M|2

 = |Ni1 cos θW +Ni2 sin θW |2

m5
Ñi

16π|〈F 〉|2 . (6.18.16)

6.19 Gluino pair production from gluon fusion: gg → g̃g̃

In this subsection we will compute the cross-section for the process gg → g̃g̃. The relevant

Feynman diagrams are shown in Fig. 6.19.1. The initial state gluons have SU(3)c adjoint

representation indices a and b, with momenta p1 and p2 and polarization vectors εµ1 = εµ(~p1, λ1)

and εµ2 = εµ(~p2, λ2), respectively. The final state gluinos carry adjoint representation indices c

and d, with momenta k1 and k2 and wave function spinors x†1 = x†(~k1, λ
′
1) or y1 = y(~k1, λ

′
1) and

x†2 = x†(~k2, λ
′
2) or y2 = y(~k2, λ

′
2), respectively.

The Feynman rules for the gluino couplings in the supersymmetric extension of QCD are

given in Fig. K.5.1. For the two s-channel amplitudes, we obtain:

iMs =
(
−gsfabe[gµν(p1 − p2)ρ + gνρ(p1 + 2p2)µ − gµρ(2p1 + p2)ν ]

)(−igρκ
s

)
εµ1ε

ν
2

×
[
(−gsf cde)x†1σκy2 + (gsf

dce) y1σκx
†
2

]
. (6.19.1)

The first factor is the Feynman rule for the three-gluon interaction of standard QCD, and

the second factor is the gluon propagator. The next four (t-channel) diagrams have a total

amplitude:

iMt =
(
−gsf ceaεµ1

)(
−gsf edbεν2

)
x†1σµ

[
i(k1 − p1)·σ

(k1 − p1)2 −m2
g̃

]
σνy2

+
(
gsf

ecaεµ1
)(
gsf

debεν2
)
y1σµ

[
i(k1 − p1)·σ

(k1 − p1)2 −m2
g̃

]
σνx

†
2

+
(
−gsf ceaεµ1

)(
gsf

debεν2
)
x†1σµ

[
img̃

(k1 − p1)2 −m2
g̃

]
σνx

†
2

+
(
gsf

ecaεµ1
)(
−gsf edbεν2

)
y1σµ

[
img̃

(k1 − p1)2 −m2
g̃

]
σνy2. (6.19.2)
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g̃c (k1, λ
′
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Figure 6.19.1: The ten Feynman diagrams for gg → g̃g̃. The momentum and spin polarization
assignments are indicated on the first diagram.
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Finally, the u-channel Feynman diagrams result in:

iMu =
(
−gsf edaεµ1

)(
−gsf cebεν2

)
x†1σν

[
i(k1 − p2)·σ

(k1 − p2)2 −m2
g̃

]
σµy2

+
(
gsf

deaεµ1
)(
gsf

ecbεν2
)
y1σν

[
i(k1 − p2)·σ

(k1 − p2)2 −m2
g̃

]
σµx

†
2

+
(
gsf

deaεµ1
)(
−gsf cebεν2

)
x†1σν

[
img̃

(k1 − p2)2 −m2
g̃

]
σµx

†
2

+
(
−gsf edaεµ1

)(
gsf

ecbεν2
)
y1σν

[
img̃

(k1 − p2)2 −m2
g̃

]
σµy2. (6.19.3)

We choose to work with real transverse polarization vectors ε1, ε2. These vectors must both

be orthogonal to the initial state collision axis in the center-of-momentum frame. Hence,

ε1 ·ε1 = ε2 ·ε2 = −1 , (6.19.4)

ε1 ·p1 = ε2 ·p1 = ε1 ·p2 = ε2 ·p2 = 0, (6.19.5)

ε1 ·k2 = −ε1 ·k1, (6.19.6)

ε2 ·k2 = −ε2 ·k1, (6.19.7)

for each choice of λ1, λ2. The sums over gluon polarizations will be performed using [cf. eq. (I.2.61)]:

∑

λ1

εµ1ε
ν
1 =

∑

λ2

εµ2ε
ν
2 = −gµν + 2 (pµ1p

ν
2 + pµ2p

ν
1)

s
. (6.19.8)

Note that in QCD processes with two or more external gluons, the term 2 (pµ1p
ν
2 + pµ2p

ν
1) /s

in eq. (6.19.8) cannot in general be dropped [197]. This is to be contrasted to the photon

polarization sum [cf. eq. (6.18.14)], where this latter term can always be neglected (due to a

Ward identity of quantum electrodynamics).

Before taking the complex square of the amplitude, it is convenient to rewrite the last two

terms in each of eqs. (6.19.2) and (6.19.3) by using the identities [see eq. (3.1.12)]:

mg̃x
†
1 = y1(k1 ·σ) , mg̃y1 = x†1(k1 ·σ) . (6.19.9)

Using eqs. (2.52) and (2.53), the resulting total matrix element is then reduced to a sum of

terms that each contain exactly one σ or σ matrix. We define convenient factors:

Gs ≡ g2sfabef cde/s, (6.19.10)

Gt ≡ g2sfacef bde/(t−m2
g̃), (6.19.11)

Gu ≡ g2sfadef bce/(u−m2
g̃). (6.19.12)

where the usual Mandelstam variables are:

s = (p1 + p2)
2 = (k1 + k2)

2, (6.19.13)

t = (k1 − p1)2 = (k2 − p2)2, (6.19.14)

u = (k1 − p2)2 = (k2 − p1)2. (6.19.15)
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Then the total amplitude is (noting that the gluon polarizations ε1, ε2 were chosen real):

M =Ms +Mt +Mu = x†1a·σy2 + y1a
∗ ·σx†2, (6.19.16)

where

aµ ≡ −(Gt +Gs)ε1 ·ε2 pµ1 − (Gu −Gs)ε1 ·ε2 pµ2 − 2Gtk1 ·ε1 εµ2 − 2Guk1 ·ε2 εµ1
−iǫµνρκε1νε2ρ(Gtp1 −Gup2)κ. (6.19.17)

Squaring the amplitude using eqs. (2.43) and (2.44), we get:

|M|2 = x†1a·σy2y
†
2a

∗ ·σx1 + y1a
∗ ·σx†2x2a·σy

†
1 + x†1a·σy2x2a·σy

†
1 + y1a

∗ ·σx†2y
†
2a

∗ ·σx1.
(6.19.18)

Summing over the gluino spins using eqs. (3.1.58)–(3.1.61), we find:

∑

λ′1,λ
′
2

|M|2 = Tr[a·σk2 ·σa∗ ·σk1 ·σ] + Tr[a∗ ·σk2 ·σa·σk1 ·σ]

−m2
g̃Tr[a·σa·σ]−m2

g̃Tr[a
∗ ·σa∗ ·σ]. (6.19.19)

Performing the traces with eqs. (2.54)–(2.56) then yields:

∑

λ′1,λ
′
2

|M|2 = 8Re[a·k1a∗ ·k2]− 4a·a∗ k1 ·k2 − 4iǫµνρκk1µk2νaρa
∗
κ − 4m2

g̃Re[a
2]. (6.19.20)

Inserting the explicit form for aµ [eq. (6.19.17)] into the above result, we obtain:

∑

λ′1,λ
′
2

|M|2 = 2(t−m2
g̃)(u−m2

g̃)[(Gt +Gu)
2 + 4(Gs +Gt)(Gs −Gu)(ε1 ·ε2)2]

+16(Gt +Gu)[Gs(t− u) +Gt(t−m2
g̃) +Gu(u−m2

g̃)](ε1 ·ε2)(k1 ·ε1)(k1 ·ε2)

−32(Gt +Gu)
2(k1 ·ε1)2(k1 ·ε2)2. (6.19.21)

The sums over gluon polarizations can be done using eq. (6.19.8), which implies:

∑

λ1,λ2

1 = 4,
∑

λ1,λ2

(ε1 ·ε2)2 = 2, (6.19.22)

∑

λ1,λ2

(ε1 ·ε2)(k1 ·ε1)(k1 ·ε2) = m2
g̃ − (t−m2

g̃)(u−m2
g̃)/s, (6.19.23)

∑

λ1,λ2

(k1 ·ε1)2(k1 ·ε2)2 =
(
m2
g̃ − (t−m2

g̃)(u−m2
g̃)/s

)2
. (6.19.24)

Summing over colors using fabef cdefabe
′
f cde

′
= 2fabef cdeface

′
f bde

′
= N2

c (N
2
c − 1) = 72,

∑

colors

G2
s =

72g4s
s2

,
∑

colors

G2
t =

72g4s
(t−m2

g̃)
2
, (6.19.25)

∑

colors

G2
u =

72g4s
(u−m2

g̃)
2
,

∑

colors

GsGt =
36g4s

s(t−m2
g̃)
, (6.19.26)

∑

colors

GsGu = − 36g4s
s(u−m2

g̃)
,

∑

colors

GtGu =
36g4s

(t−m2
g̃)(u−m2

g̃)
. (6.19.27)
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Putting all the factors together, and averaging over the initial state colors and spins, we have:

dσ

dt
=

1

16πs2

(
1

64

∑

colors

1

4

∑

spins

|M|2
)

=
9πα2

s

4s4

[
2(t−m2

g̃)(u−m2
g̃)− 3s2 − 4m2

g̃s+
s2(s+ 2m2

g̃)
2

(t−m2
g̃)(u−m2

g̃)
−

4m4
g̃s

4

(t−m2
g̃)

2(u−m2
g̃)

2

]
,

(6.19.28)

which agrees with the result of [177, 198] (after some rearrangement). Note that in the center-

of-momentum frame, the Mandelstam variable t is related to the scattering angle θ between an

initial state gluon and a final state gluino by:

t = m2
g̃ +

s

2

(
cos θ

√
1− 4m2

g̃/s − 1
)
. (6.19.29)

Since the final state has identical particles, the total cross-section can now be obtained by:

σ =
1

2

∫ t+

t−

dσ

dt
dt , (6.19.30)

where t± are obtained by inserting cos θ = ±1 into eq. (6.19.29).

6.20 R-parity violating stau decay: τ̃+

R → e+ν̄µ

In an R-parity-violating extension of the MSSM (denoted henceforth by RPV-MSSM), new

Yukawa couplings can arise [see eqs. (L.1)–(L.3)] that violate either a global U(1) lepton number

L or baryon number B. The corresponding Feynman rules are derived in Appendix L. Consider

the decay of a right-handed scalar tau via an L-violating LLē coupling governed by eq. (L.1).

This is particularly relevant when the scalar tau is the lightest supersymmetric particle (LSP)

[199, 200] and in the case of resonant slepton production [201, 202]. Note that in R-parity

violation the LSP need not be the lightest neutralino and in a minimal supergravity embedding

often it is not [203,204]. The Feynman diagram is shown in Fig. 6.20, where we have also defined

the momenta and the helicities of the fermions.

τ̃+R

e†(ke, λe)

ν†µ(kν̄µ , λν̄µ)

Figure 6.20.1: Feynman diagram for the R-parity-violating decay τ̃+R → e+ν̄µ

The amplitude for the R-parity-violating τ̃+R decay is given by:

iM = −iλyeyν̄µ . (6.20.1)
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Here we have defined λ ≡ λ123, and the external wave functions are denoted by ye ≡ y(~ke, λe),

and yν̄µ ≡ y(~kν̄µ , λν̄µ), respectively. Using eq. (2.42), the amplitude squared is

|M|2 = |λ|2yeyν̄µy†ν̄µy†e. (6.20.2)

Summing over the fermion spins using eq. (3.1.59) gives:

∑

λe,λν̄µ

|M|2 = |λ|2Tr[ke ·σ kν̄µ ·σ] = |λ|2m2
τ̃R , (6.20.3)

where in the last step we have used the trace formula eq. (2.54), and neglected the mass of the

electron and the neutrino. The total decay rate is then given by

Γ =
1

16πmτ̃R

( ∑

λe,λν̄µ

|M|2
)

=
|λ|2
16π

mτ̃R , (6.20.4)

which agrees with the computation in refs. [205–207]. Completely analogously we can obtain

the total rate for the decays ν̃µ → τ−e+ and ẽ−L → τ−ν̄µ, which proceed via the same operator,

by replacing mτ̃R → (mẽL ,mν̃µ), respectively.

In general the two-body decay rate of a sfermion f̃ via the L-violating LQd̄ coupling gov-

erned by eq. (L.2) or the B-violating ūd̄d̄ coupling governed by eq. (L.3) is given by:

Γ(f̃ → f1f2) =
C|λ|2
16π

mf̃ , (6.20.5)

where we have neglected the masses m1,2 of the final state fermions. The factor C denotes the

color factor. For the slepton decays via the LQd̄ coupling which are summed over the final

state quark colors, C = δijδij = 3, where i, j = 1, 2, 3 and δij is the symmetric invariant tensor

of color SU(3). For the squark decays via the LQd̄ where the initial state color is averaged

over and the final state color is summed, C = 1. For the squark decays via the ūd̄d̄ coupling,

C = 1
3ǫ
ijkǫijk = 2, where the Levi-Civita tensor, ǫijk = ǫijk, is the antisymmetric invariant

tensor of color SU(3). In realistic cases, one must also include the effects of mixing for the

third-family sfermions, which we have omitted here for simplicity.

6.21 R-parity-violating neutralino decay: Ñi → µ−ud̄

Next we consider the R-parity-violating three-body decay of a neutralino Ñi → µ−ud̄, which

arises due to the L-violating LQd̄ coupling governed by eq. (L.2). This is of particular interest

when the neutralino is the LSP, since it determines the final state signatures [208–210]. The

three Feynman diagrams are shown in Fig. 6.21.1, including the definitions of the momenta

and helicities. We have neglected sfermion mixing, i.e. we assume µ̃L, ũL, and d̃R are mass

eigenstates. Using the Feynman rules given in Figs. L.2 and K.4.2 (or K.4.4), we obtain the
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χ0 †
i (pi, λi) u (ku, λu)

d̄ (kd, λd)

µ (kµ, λµ)

µ̃L

χ0 †
i (pi, λi) µ (kµ, λµ)

u (ku, λu)

d̄ (kd, λd)

d̃R

χ0 †
i (pi, λi) µ (kµ, λµ)

d̄ (kd, λd)

u (ku, λu)

ũL

Figure 6.21.1: Feynman diagrams for the R-parity violating decay Ñi → µ−ud̄.

corresponding contributions to the decay amplitude,

iM1 =
(
iλ′∗
) [ i√

2
(gNi2 + g′Ni1)

][
i

(pi − kµ)2 −m2
µ̃L

]
y†ix

†
µx

†
ux

†
d , (6.21.1)

iM2 =
(
iλ′∗
)
[
− i
√
2

3
g′Ni1

][
i

(pi − kd)2 −m2
d̃R

]
y†ix

†
dx

†
µx

†
u , (6.21.2)

iM3 =
(
iλ′∗
) [
− i√

2
(gNi2 + g′Ni1/3)

] [
i

(pi − ku)2 −m2
ũL

]
y†ix

†
ux

†
dx

†
µ . (6.21.3)

Here we have defined λ′ ≡ λ′211, and the external wave functions are denoted by y†i ≡ y†(~pi, λi),
x†µ ≡ x†(~kµ, λµ), x

†
u ≡ x†(~ku, λu), and x†d ≡ x†(~kd, λd), respectively. In the following, we will

neglect all of the final state fermion masses. The results will be expressed in terms of the

kinematic variables

zµ ≡ 2pi ·kµ/m2
Ñi

= 2Eµ/mÑi
, (6.21.4)

zd ≡ 2pi ·kd/m2
Ñi

= 2Ed/mÑi
, (6.21.5)

zu ≡ 2pi ·ku/m2
Ñi

= 2Eu/mÑi
, (6.21.6)

which satisfy zµ + zd + zu = 2. Then we can rewrite the total matrix element as:

M = c1y
†
ix

†
µx

†
ux

†
d + c2y

†
ix

†
dx

†
µx

†
u + c3y

†
ix

†
ux

†
dx

†
µ , (6.21.7)
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where

c1 ≡
1√
2
λ′∗(gNi2 + g′Ni1)/[m

2
µ̃L
−m2

Ñi
(1− zµ)], (6.21.8)

c2 ≡ −
√
2

3
λ′∗g′Ni1/[m

2
d̃R
−m2

Ñi
(1− zd)], (6.21.9)

c3 ≡ −
1√
2
λ′∗(gNi2 + g′Ni1/3)/[m

2
ũL −m

2
Ñi
(1− zu)]. (6.21.10)

Before squaring the amplitude, it is convenient to use the Fierz identity [eq. (2.65)] to reduce

the number of terms:

M = (c1 − c3)y†ix†µx†ux
†
d + (c2 − c3)y†ix

†
dx

†
µx

†
u. (6.21.11)

Using eq. (2.42), we obtain

|M|2 = |c1 − c3|2y†ix†µxµyix†ux
†
dxdxu + |c2 − c3|2y

†
ix

†
dxdyix

†
µx

†
uxuxµ

−2Re[(c1 − c3)(c∗2 − c∗3)y†ix†µxµxux†ux
†
dxdyi] , (6.21.12)

where eq. (2.58) was used on the last term. Summing over the fermion spins using eqs. (3.1.58)–

(3.1.61), we obtain:

∑

spins

|M|2 = |c1 − c3|2Tr[kµ ·σpi ·σ]Tr[kd ·σku ·σ] + |c2 − c3|2Tr[kd ·σpi ·σ]Tr[ku ·σkµ ·σ]

−2Re
[
(c1 − c3)(c∗2 − c∗3)Tr[kµ ·σku ·σkd ·σpi ·σ]

]
. (6.21.13)

Applying the trace formulae, eqs. (2.54) and (2.56), we obtain

∑

spins

|M|2 = 4|c1 − c3|2pi ·kµ kd ·ku + 4|c2 − c3|2pi ·kd kµ ·ku

−4Re
[
(c1 − c3)(c∗2 − c∗3)](kµ ·ku pi ·kd + pi ·kµ kd ·ku − kµ ·kd pi ·ku)

= m4
Ñi

[
|c1|2zµ(1− zµ) + |c2|2zd(1− zd) + |c3|2zu(1− zu)

−2Re[c1c∗2](1− zµ)(1− zd)− 2Re[c1c
∗
3](1− zµ)(1− zu)

−2Re[c2c∗3](1− zd)(1− zu)
]
, (6.21.14)

where in the last equality we have used eqs. (6.21.4)–(6.21.6) and

2kµ ·kd = (1− zu)m2
Ñi
, 2kµ ·ku = (1− zd)m2

Ñi
, 2kd ·ku = (1− zµ)m2

Ñi
. (6.21.15)

The differential decay rate follows:

d2Γ

dzµdzd
=
NcmÑi

28π3

(
1

2

∑

spins

|M|2
)
, (6.21.16)
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where a factor of Nc = 3 has been included for the sum over colors, a factor of 1/2 to average

over the neutralino spin, and the kinematic limits are

0 < zµ < 1, (6.21.17)

1− zµ < zd < 1. (6.21.18)

In the limit of heavy sfermions, the integrations over zd and then zµ are simple, with the result

for the total decay width:

Γ =
Ncm

5
Ñi

211 · 3π3
(
|c′1|2 + |c′2|2 + |c′3|2 −Re[c′1c

′∗
2 + c′1c

′∗
3 + c′2c

′∗
3 ]
)
, (6.21.19)

where the c′i are obtained from ci of eqs. (6.21.8)–(6.21.10) by neglecting m2
Ñi

in the denom-

inators. Our results agree with the complete computation (which includes mixing) given in

refs. [206,207,211]. Earlier calculations with some simplifications are given in refs. [209,212].

6.22 Top-quark condensation from a Nambu-Jona-Lasinio model gap equa-
tion

The previous examples have involved renormalizable field theories. However, there are cases in

which it is preferable to use effective four-fermion interactions. The obvious historical example

is the four-fermion Fermi theory of weak decays. This has been superseded by a more complete

and accurate theory of the weak interactions but is still useful for leading order calculations of

low-energy processes. Another case of some interest is the use of strong coupling four-fermion

interactions to drive symmetry breaking via a Nambu-Jona-Lasinio model [213], as in the top

quark condensate approach [214–218] to electroweak symmetry breaking.

Consider an effective four-fermion Lagrangian involving the top quark [216], written in

two-component fermion form as:

L = it†σµ∂µt+ it̄†σµ∂µt̄+
G

Λ2
(tt̄)(t†t̄†). (6.22.1)

Here the Standard Model gauge interactions have been suppressed; the quantities within paren-

theses are color singlets. Note also that there is no top quark Yukawa coupling to a Higgs scalar

boson, nor a top quark mass term, which would normally appear in the form −mt(tt̄ + t†t̄†).

Instead, the effective top quark mass is supposed to be driven by a non-perturbatively large and

positive dimensionless coupling G, with Λ the cutoff scale at which G arises from some more

fundamental physics such as topcolor [218].

The Feynman rule for the four-fermion interaction can be derived from the mode expansion

results of Section 3, and is given in Fig. 6.22.1. The resulting gap equation for the dynamically

generated top quark mass is shown in Fig. 6.22.2. Evaluating this using the Feynman rules of

Figs. 4.2.3 and 4.2.4, one finds:

−imtδ
j
i δ
β
α = (−1)

∫ Λ d4k

(2π)4

(
i
G

Λ2
δji δ

k
nδ
β
αδ

β̇
α̇

) (
δnk δ

α̇
β̇

imt

k2 −m2
t + iǫ

)
. (6.22.2)
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t, i, α

t̄, j, β

t, k, α̇

t̄, n, β̇

i
G

Λ2
δji δ

k
nδ
β
αδ

β̇
α̇

Figure 6.22.1: Feynman rule for the four-fermion interaction in the top quark condensate
model. The indices i, j, k, n = 1, 2, 3 are for color in the fundamental representation of SU(3),
and the indices α, β, α̇, β̇ are two-component spinor indices.

=

Figure 6.22.2: The Nambu-Jona-Lasinio gap equation for a possible dynamically generated
top quark mass mt.

Here i, j, k, n are color indices of the fundamental representation of SU(3), and α, β, α̇, β̇ are

two-component spinor indices. The factor of (−1) on the right-hand side is due to the presence

of a fermion loop.

Euclideanizing the loop integration over kµ by k2 → −k2E and
∫
d4k → i

∫
d4kE , and then

rewriting the integration in terms of x = k2E , this amounts to [216]:

mt =
2NcGmt

16π2Λ2

∫ Λ2

0
dx/(1 +m2

t/x)

=
3Gmt

8π2
[1− (m2

t/Λ
2) ln(Λ2/m2

t ) + . . .] , (6.22.3)

where Nc = 3 is the number of colors, and a factor of two arises from the sum over dotted spinor

indices of δβ̇α̇δ
α̇
β̇
.

For small or negative G, only the trivial solution mt = 0 is possible. However, for G ≥
Gcritical = 8π2/3 ≈ 26, there is a positive solution for m2

t/Λ
2 [216]. It is now known that this

minimal version of the model cannot explain the top quark mass and the observed features of

electroweak symmetry breaking, but extensions of it may be viable [219].

6.23 Electroweak vector boson self-energies from fermion loops

In this subsection, we consider the contributions to the self-energy functions of the Standard

Model electroweak vector bosons coming from quark and lepton loops. (For a derivation of

equivalent results in the four-component fermion formalism, see for example Section 21.3 of

[114].) The independent self-energies are given by ΠWW
µν , ΠZZµν , Π

γZ
µν = ΠZγµν , and Πγγµν , as shown
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iΠWW
µν (p) = W+ W+

f

f ′

p p

µ ν

Figure 6.23.1: Contributions to the self-energy function for the W boson in the Standard
Model, from loops involving the left-handed quark and lepton pairs (f, f ′) = (e, νe), (µ, νµ),
(τ, ντ ), (d, u), (s, c), and (b, t). The momentum of the positively charged W+ flows from left to
right.

iΠV V
′

µν =

f

f

µ ν

V V ′

+

f̄

f̄

µ ν

V V ′

+

f

f

f̄

f̄
µ ν

V V ′

+

f̄

f̄

f

f
µ ν

V V ′

Figure 6.23.2: Contributions to the diagonal and off-diagonal self-energy functions for the
neutral vector bosons V, V ′ = γ, Z in the Standard Model, from loops involving the three
generations of leptons and quarks: f = e, νe, µ, νµ, τ, ντ , d, u, s, c, b, t.

in Figs. 6.23.1 and 6.23.2. In each case, iΠµν is equal to the sum of Feynman diagrams for

two-point functions with amputated external legs, and is implicitly a function of the external

momentum pµ.

First consider the self-energy function for theW boson, shown in Fig. 6.23.1. TheW boson

only couples to left-handed fermions, so there is only one Feynman diagram for each Standard

model weak isodoublet. Taking the external momentum flowing from left to right to be p, and

the loop momentum flowing counterclockwise in the upper fermion line (f) to be k, we have

from the Feynman rules of Fig. J.1.2:

iΠWW
µν = (−1)µ2ǫ

∫
ddk

(2π)d

∑

(f,f ′)

Nf
c Tr

[(
−i g√

2
σµ

)( ik ·σ
k2 −m2

f

)(
−i g√

2
σν

)( i(k + p)·σ
(k + p)2 −m2

f ′

)]
.

(6.23.1)

Here µ is a regularization scale for dimensional regularization in d ≡ 4 − 2ǫ dimensions. The

sum in eq. (6.23.1) is over the six isodoublet pairs (f, f ′) = (e, νe), (µ, νµ), (τ, ντ ), (d, u), (s, c),

and (b, t) with CKM mixing neglected, and

Nf
c =

{
3 , f = quarks ,

1 , f = leptons .
(6.23.2)

The first factor of (−1) in eq. (6.23.1) is due to the presence of a closed fermion loop. The trace

is taken over the two-component dotted spinor indices. Using eq. (B.2.27), it follows that

ΠWW
µν =

g2

32π2

∑

f

Nf
c Iµν(m

2
f ,m

2
f ′) , (6.23.3)
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where we have defined

Iµν(x, y) = i(16π2)µ2ǫ
∫

ddk

(2π)d
4kµkν + 2kµpν + 2kνpµ − 2k ·(k + p) gµν

(k2 − x)[(k + p)2 − y] . (6.23.4)

This integral can be evaluated by the standard dimensional regularization methods [114,220]:

Iµν(x, y) = (p2gµν − pµpν)I1(p2;x, y) + gµνI2(p
2;x, y), (6.23.5)

where, after neglecting terms that vanish as ǫ→ 0,

I1(s;x, y) = −
2

3ǫ
+

2

3s2

{
(2x− 2y − s)A(x) + (2y − 2x− s)A(y)

+
[
2(x− y)2 − s(x+ y)− s2

]
B(s;x, y)− s(x+ y) + s2/3

}
, (6.23.6)

I2(s;x, y) =
x+ y

ǫ
− 1

s

{
(x− y)

[
A(x)−A(y)

]
+
[
(x− y)2 − s(x+ y)

]
B(s;x, y)

}
. (6.23.7)

The functions

A(x) ≡ x ln(x/Q2)− x, (6.23.8)

B(s;x, y) ≡ −
∫ 1

0
dt ln

(
tx+ (1− t)y − t(1− t)s− iε

Q2

)
, (6.23.9)

are the finite parts of one-loop Passarino-Veltman functions [221], with the renormalization scale

Q related to the regularization scale µ by the modified minimal subtraction relation

µ2 = Q2eγ/4π, (6.23.10)

where γ = 0.577216 . . . is Euler’s constant.

The photon and Z boson have mixed self-energy functions, defined in Fig. 6.23.2. Applying

the pertinent Feynman rules from Fig. J.1.2, we obtain:

iΠV V
′

µν = (−1)µ2ǫ
∫

ddk

(2π)d

∑

f

Nf
c Tr

{
(
−iGfV σµ

)( ik ·σ
k2 −m2

f

)(
−iGfV ′σν

)( i(k + p)·σ
(k + p)2 −m2

f

)

+
(
−iGf̄V σµ

)( ik ·σ
k2 −m2

f

)(
−iGf̄V ′σν

)( i(k + p)·σ
(k + p)2 −m2

f

)

+
(
−iGfV σµ

)( imf

k2 −m2
f

)(
iGf̄V ′σν

)( imf

(k + p)2 −m2
f

)

+
(
−iGf̄V σµ

)( imf

k2 −m2
f

)(
iGfV ′σν

)( imf

(k + p)2 −m2
f

)}
, (6.23.11)

where V and V ′ can each be either γ or Z, and
∑

f is taken over the 12 Standard Model fermions.

The corresponding V ff and V f̄ f̄ couplings are:66

Gfγ = −Gf̄γ = eQf , (6.23.12)

GfZ =
g

cW
(T f3 − s2WQf ), Gf̄Z =

g

cW
s2WQf . (6.23.13)

66Note that there is no contribution from the left-handed two-component antineutrino fields, ν̄e, ν̄µ, ν̄τ , which
do not exist in the Standard Model.
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The four terms in eq. (6.23.11) correspond to the four diagrams in Fig. 6.23.2, in the same order.

The first two terms in eq. (6.23.11) are computed exactly as for ΠWW
µν , while in the last two

terms we use eq. (B.2.5) to compute the trace. It follows that the neutral electroweak vector

boson self-energy function matrix, after dropping terms that vanish as ǫ→ 0, is given by

ΠV V
′

µν =
1

16π2

∑

f

Nf
c

[
(GfVG

f
V ′ +Gf̄VG

f̄
V ′)Iµν(m

2
f ,m

2
f ) + gµν(G

f
VG

f̄
V ′ +Gf̄VG

f
V ′)m

2
f I3(m

2
f ,m

2
f )
]
,

(6.23.14)

where Iµν(x, y) was defined in eqs. (6.23.5)–(6.23.7), and we have defined the function

I3(x, y) = −i(16π2) µ2ǫ
∫

ddk

(2π)d
2

(k2 − x)[(k + p)2 − y] =
2

ǫ
+ 2B(p2;x, y). (6.23.15)

The photon self-energy function is a simple special case of eq. (6.23.14):

Πγγµν =
1

16π2

∑

f

2Nf
c (eQf )

2
[
Iµν(m

2
f ,m

2
f )− gµνm2

fI3(m
2
f ,m

2
f )
]
. (6.23.16)

Evaluating the integrals Iµν and I3 yields

Πγγµν =
α

3π

∑

f

Nf
c Q

2
f

(
p2gµν − pµpν

){
− 1

ǫ
+
1

3
− 2

p2
[
A(m2

f ) +m2
f

]
−
(
1+

2m2
f

p2

)
B(p2;m2

f ,m
2
f )

}
,

(6.23.17)

in agreement with the result given in, for example, eq. (7.90) of [114]. This formula satisfies

pµΠγγµν = pνΠγγµν = 0 as required by the Ward identity of QED, and is regular in the limit p2 → 0.

In each of eqs. (6.23.3), (6.23.14), and (6.23.17), there are 1/ǫ poles, contained in the

loop integral functions. In the MS renormalization scheme, these poles are simply removed by

counterterms, which have no other effect.

In eqs. (6.23.1) and (6.23.11), we chose to write a σµ for the left vertex in the Feynman

diagram in each case. This is an arbitrary choice; we could also have chosen to use instead −σµ
for the left vertex in any given diagram, as mentioned in the caption for Fig. J.1.2. This would

have dictated the replacements σ ↔ −σ throughout the expression for the diagram, including

for the fermion propagators, as was indicated in Fig. 4.2.4. It is not hard to check that the result

after computing the spinor index traces is unaffected. Note that the contribution proportional

to ǫµνρκ from eq. (B.2.26) or eq. (B.2.27) vanishes; this is clear because the self-energy function

is symmetric under interchange of vector indices, and there is only one independent momentum

in the problem.

6.24 Self-energy and pole mass of the top quark

We next consider the one-loop calculation of the self-energy and the pole mass of the top quark

in the Standard Model, including the effects of the gauge interactions and the top and bottom

quark Yukawa couplings. As in Section 6.1, we treat this as a one-generation problem, neglecting
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p

−ip·σΣLt

=

t t t

g, γ, Z

+

t b t

W+

+

t t̄ t

hSM, G
0

+

t b̄ t

G+

p

−ip·σΣRt

=

t̄ t̄ t̄

g, γ, Z

+

t̄ t t̄

hSM, G
0

+

t̄ b t̄

G+

p

−iΣDt

=

t̄ t̄ t t

g, γ, Z

+

t̄ t t̄ t

hSM, G
0

+

t̄ b b̄ t

G+

+

t̄ t

hSM

Figure 6.24.1: One-loop contributions to the 1PI self-energy functions for the top quark in the
Standard Model. The external momentum of the physical top quark, pµ, flows from the right to
the left. The loop momentum kµ in the text is taken to flow clockwise. Spinor and color indices
are suppressed. The external legs are amputated. The last diagram contains one-loop tadpole
contributions.

CKM mixing. Consequently, the corresponding Yukawa couplings Yt and Yb are real and positive

(by a suitable phase redefinition of the Higgs field67). Using the formalism of Section 4.6 for

Dirac fermions, the independent 1PI self-energy functions are given by68 ΣLt, ΣRt and ΣDt

(defined in Fig. 4.6.5) as shown in Fig. 6.24.1. Note that in these diagrams, the physical top

quark moves from right to left, carrying momentum pµ. Then according to the general formula

obtained in eq. (4.6.31), the complex pole squared mass of the top quark is given by:

M2
t − iΓtMt =

(mt +ΣDt)
2

(1− ΣLt)(1 − ΣRt)
, (6.24.1)

where mt is the tree-level mass. Working consistently to one-loop order, this yields

M2
t − iΓtMt =

[
m2
t (1 + ΣLt +ΣRt) + 2mtΣDt

] ∣∣∣
s=m2

t+iε
. (6.24.2)

(It would be just as valid to substitute in s =M2
t + iε here, as two-loop order effects are being

neglected.)

It remains to calculate the self-energy functions ΣLt, ΣRt and ΣDt. Two regularization

procedures will be used simultaneously—the MS scheme [222] based on dimensional regulariza-

tion [124] and the DR scheme based on dimensional reduction [223]. This is accomplished by

67As shown in Section 3.2, after the fermion mass matrix diagonalization procedure, the tree-level fermion
masses are real and non-negative. If CKM mixing is neglected, it follows from eq. (J.1.9) that the corresponding
diagonal Yukawa couplings are real and positive if the phase of the Higgs field is chosen such that the neutral
Higgs vacuum expectation value v > 0.

68Since the Yukawa couplings can be chosen real (in the one-generation model), ΣLt = ΣLt. Note that after
suppressing the color degrees of freedom, ΣLt, ΣRt and ΣDt are one-dimensional matrices, so we do not employ
boldface letters in this case.
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hSM + hSM = 0

Figure 6.24.2: The tree-level Higgs tadpole cancels against the one-loop Higgs tadpole, pro-
vided that one expands around a Higgs vacuum expectation value that minimizes the one-loop
effective potential (rather than the tree-level Higgs potential, which would yield no tree-level
tadpole).

integrating over the loop momentum in

d ≡ 4− 2ǫ (6.24.3)

dimensions, but with the vector bosons possessing

D ≡ 4− 2ǫδMS (6.24.4)

components, where

δMS ≡
{
1 for MS ,

0 for DR .
(6.24.5)

In other words, the metric gµν appearing explicitly in the vector propagator is treated as four

dimensional in DR, but as d-dimensional in MS. The renormalization scale Q is related to the

regularization scale µ in both cases by the modified minimal subtraction relation of eq. (6.23.10).

The calculation of the non-tadpole contributions to the self-energy functions will be per-

formed below in a general Rξ gauge, with a vector boson propagator as in Fig. 4.2.5. There are

different ways to treat the tadpole contributions, corresponding to different choices for the Higgs

vacuum expectation value around which the tree-level Lagrangian is expanded. If one chooses to

expand around the minimum of the tree-level Higgs potential, then there are no tree-level tad-

poles, but there will be non-zero contributions from the last diagram shown in Fig. 6.24.1. (This

corresponds to the treatment given, for example, in ref. [224].) Alternatively, one can choose

to expand around the Higgs vacuum expectation value v that minimizes the one-loop Landau

gauge69 effective potential. In that case, the one-loop tadpole contribution is precisely canceled

by the tree-level Higgs tadpole, as shown in Fig. 6.24.2. Here, we have in mind the latter pre-

scription; the calculation for the pole mass is therefore complete without tadpole contributions

provided that the tree-level top quark mass is taken to be

mt = Ytv, (6.24.6)

69This procedure is considerably more involved outside of Landau gauge, because the propagators mix the
longitudinal components of the vector boson with the Nambu-Goldstone bosons for ξ 6= 0 if one expands around
a Higgs vacuum expectation value that does not minimize the tree-level potential. This is the same reason the
effective potential is traditionally calculated specifically in Landau gauge.
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where Yt is the MS or DR Yukawa coupling, and v is the Higgs vacuum expectation value at the

minimum of the one-loop effective potential in Landau gauge. To be consistent with this choice,

ξ = 0 should be taken in all formulae below that involve electroweak gauge bosons or Goldstone

bosons. (The gluon contribution is naturally independent of ξ because the gauge symmetry is

unbroken, providing a check of gauge-fixing invariance.) Nevertheless, for the sake of generality

we will keep the dependence on ξ in the computation of the individual non-tadpole self-energy

diagrams below.

Consider the one-loop calculation of the self-energy ΣLt, which is the sum of individual

diagram contributions ΣLt = [ΣLt]g+[ΣLt]γ+[ΣLt]Z+[ΣLt]W+[ΣLt]hSM+[ΣLt]G0+[ΣLt]G+ . First,

consider the diagrams involving exchanges of the scalars φ = hSM, G
0, G±. These contributions

all have the same form

−ip·σ [ΣLt]φ = µ2ǫ
∫

ddk

(2π)d
(−iY ∗)

(
i(k + p)·σ

(k + p)2 −m2
f

)
(−iY )

(
i

k2 −m2
φ

)
, (6.24.7)

where the loop momentum kµ flows clockwise, and the couplings and propagator masses are,

using the Feynman rules of Figs. J.1.3 and J.1.4,

for φ = hSM : Y = Yt/
√
2; mf = mt; m2

φ = m2
hSM

, (6.24.8)

for φ = G0 : Y = iYt/
√
2; mf = mt; m2

φ = ξm2
Z , (6.24.9)

for φ = G± : Y = Yb; mf = mb; m2
φ = ξm2

W . (6.24.10)

Multiplying both sides by p·σ and taking the trace over spinor indices using eq. (B.2.5), one

finds

[ΣLt]φ = i|Y |2µ
2ǫ

p2

∫
ddk

(2π)d
p·(k + p)

[(k + p)2 −m2
f ][k

2 −m2
φ]
. (6.24.11)

Performing the loop momentum integration in the standard way [114,220], and expanding in ǫ

up to constant terms, one finds that in each case

[ΣLt]φ = − 1

16π2
|Y |2 IFS(s;m2

f ,m
2
φ). (6.24.12)

Here we have introduced some notation for the loop integral:

IFS(s;x, y) ≡
1

2ǫ
+

(s + x− y)B(s;x, y) +A(x)−A(y)
2s

, (6.24.13)

where the Passarino-Veltman functions A(x) and B(s;x, y) were defined in eqs. (6.23.8) and

(6.23.9). These functions depend on the renormalization scale Q, which is related to µ via

eq. (6.23.10). It can be checked that IFS(s;x, y) has a smooth limit as s→ 0.

Next, let us consider the contributions to ΣLt involving the vector bosons V = g, γ, Z,W .

These have the common form:

−ip·σ[ΣLt]V = µ2ǫ
∫

ddk

(2π)d
(−iGσµ)

(
i(k + p)·σ

(k + p)2 −m2
f

)
(−iGσν)

( −i
k2 −m2

V

)(
gµν +

(ξ − 1)kµkν

k2 − ξm2
V

)
, (6.24.14)
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where again the loop momentum k flows clockwise, and, using the rules of Figs. J.1.2 and K.5.1:

for V = g : G = gsT
a , mf = mt, (6.24.15)

for V = γ : G = eQt , mf = mt, (6.24.16)

for V = Z : G = g(T t3 − s2WQt)/cW , mf = mt, (6.24.17)

for V =W : G = g/
√
2 , mf = mb. (6.24.18)

In the case of gluon exchange (V = g), the T a are the SU(3)C generators (with color indices

suppressed). The adjoint representation index a is summed over, producing a factor of the

Casimir invariant (T aT a)ij = CF δij = 4
3δij . We now use σµ σρ σν g

µν = −(D − 2)σρ [see

eq. (B.2.11)]; note that this introduces a difference between the MS and DR schemes. Also, we

use k ·σ(k + p)·σk ·σ = (k2 + 2k ·p)k ·σ − k2p·σ, which follows from eq. (2.53). One therefore

obtains, after multiplying by p·σ and taking the trace over spinor indices:

[ΣLt]V = −iG2µ
2ǫ

p2

∫
ddk

(2π)d
1

[(k + p)2 −m2
f ][k

2 −m2
V ]

[
(2−D)p·(k + p)

+
(
k2k ·p+ 2(k ·p)2 − k2p2

) (ξ − 1)

k2 − ξm2
V

]
. (6.24.19)

Performing the loop momentum integration, one finds that

[ΣLt]V = − 1

16π2
G2IFV (s;m

2
f ,m

2
V ), (6.24.20)

where we have introduced the notation

IFV (s;x, y) =
ξ

ǫ
+ [(s+ x− y)B(s;x, y) +A(x)−A(y)]/s − δMS +

{
(s− x)[A(y)−A(ξy)]

+[(s − x)2 − y(s+ x)]B(s;x, y)− [(s − x)2 − ξy(s+ x)]B(s;x, ξy)
}
/2ys, (6.24.21)

after dropping terms that vanish as ǫ→ 0. Combining the results of eqs. (6.24.12) and (6.24.20):

ΣLt = −
1

16π2

[(
g2sCF + e2Q2

t

)
IFV (m

2
t ;m

2
t , 0) + [g(T t3 − s2WQt)/cW ]2IFV (m

2
t ;m

2
t ,m

2
Z)

+
1

2
g2IFV (m

2
t ;m

2
b ,m

2
W ) +

1

2
Y 2
t IFS(m

2
t ;m

2
t ,m

2
hSM

)

+
1

2
Y 2
t IFS(m

2
t ;m

2
t , ξm

2
Z) + Y 2

b IFS(m
2
t ;m

2
b , ξm

2
W )
]
, (6.24.22)

where we have now substituted s = m2
t . It is useful to note that for massless gauge bosons,

IFV (x;x, 0) = ξ

[
1

ǫ
− ln(x/Q2) + 2

]
+ 1− δMS. (6.24.23)

The contributions to ΣRt = [ΣRt]g + [ΣRt]γ + [ΣRt]Z + [ΣRt]hSM + [ΣRt]G0 + [ΣRt]G± are

obtained similarly. [Note that there is no W boson contribution, since the right-handed top
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quark is an SU(2)L singlet.] For the scalar exchange diagrams with φ = hSM, G
0, G±, the

general form is:

−ip·σ[ΣRt]φ = µ2ǫ
∫

ddk

(2π)d
(−iY )

(
i(k + p)·σ

(k + p)2 −m2
f

)
(−iY ∗)

(
i

k2 −m2
φ

)
, (6.24.24)

which yields

[ΣRt]φ = − 1

16π2
|Y |2 IFS(s;m2

f ,m
2
φ). (6.24.25)

Here the couplings and propagator masses for hSM and G0 are the same as in eqs. (6.24.8),

(6.24.9), but now instead of eq. (6.24.10),

for φ = G± : Y = −Yt , mf = mb , m2
φ = ξm2

W , (6.24.26)

from Fig. J.1.4. For the contributions due to exchanges of vectors v = g, γ, Z, the general form

is given by

−ip·σ[ΣRt]V = µ2ǫ
∫

ddk

(2π)d
(iGσµ)

(
i(k + p)·σ

(k + p)2 −m2
f

)
(iGσν)

( −i
k2 −m2

V

)(
gµν +

(ξ − 1)kµkν

k2 − ξm2
V

)
, (6.24.27)

where

for V = g : G = −gsT a , (6.24.28)

for V = γ : G = −eQt , (6.24.29)

for V = Z : G = gs2WQt/cW , (6.24.30)

after using the rules of Figs. J.1.2 and K.5.1 with mf = mt in each case. We then make

use of σµ σρ σν g
µν = −(D − 2)σρ [cf. eq. (B.2.10)] and k ·σ(k + p)·σk ·σ = (k2 + 2k ·p)k ·σ −

k2p·σ [cf. eq. (2.52)]. After multiplying by p·σ and taking the trace over spinor indices [using

eq. (B.2.5)], we obtain

[ΣRt]V = − 1

16π2
G2IFV (s;m

2
t ,m

2
V ) , (6.24.31)

in terms of the same function appearing in eqs. (6.24.21) and (6.24.23). Adding up these con-

tributions and taking s = m2
t yields

ΣRt = −
1

16π2

[(
g2sCF + e2Q2

t

)
IFV (m

2
t ;m

2
t , 0) + (g2Q2

t s
4
W/c

2
W )IFV (m

2
t ;m

2
t ,m

2
Z)

+
1

2
Y 2
t IFS(m

2
t ;m

2
t ,m

2
hSM

) +
1

2
Y 2
t IFS(m

2
t ;m

2
t , ξm

2
Z) + Y 2

t IFS(m
2
t ;m

2
b , ξm

2
W )
]
. (6.24.32)

Next, consider the contributions to ΣDt = [ΣDt]g + [ΣDt]γ + [ΣDt]Z + [ΣDt]hSM + [ΣDt]G0 +

[ΣDt]G± , ignoring the tadpole contribution for now. The diagrams involving the exchange of

scalars φ = hSM, G
0, G± have the form:

−i[ΣDt]φ = µ2ǫ
∫

ddk

(2π)d
(−iY1)

(
imf

(k + p)2 −m2
f

)
(−iY2)

(
i

k2 −m2
φ

)
, (6.24.33)
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so that

[ΣDt]φ = imfY1Y2µ
2ǫ

∫
ddk

(2π)d
1

[(k + p)2 −m2
f ][k

2 −m2
φ]

=
1

16π2
mfY1Y2IFS(s;m

2
f ,m

2
φ) , (6.24.34)

where we have introduced the notation:

IFS(s;x, y) ≡ −
1

ǫ
−B(s;x, y), (6.24.35)

after dropping terms that vanish as ǫ → 0. The relevant couplings and masses are, from

Figs. J.1.3 and J.1.4:

for φ = hSM : Y1 = Y2 = Yt/
√
2 , mf = mt , m2

φ = m2
hSM

, (6.24.36)

for φ = G0 : Y1 = Y2 = iYt/
√
2, mf = mt , m2

φ = ξm2
Z , (6.24.37)

for φ = G± : Y1 = Yb, Y2 = −Yt, mf = mb , m2
φ = ξm2

W . (6.24.38)

The contributions from vector boson exchanges are of the form

−i[ΣDt]V = µ2ǫ
∫

ddk

(2π)d
(iG1σµ)

(
imf

(k + p)2 −m2
f

)
(−iG2σν)

( −i
k2 −m2

V

)(
gµν +

(ξ − 1)kµkν

k2 − ξm2
V

)
, (6.24.39)

Using σµσνg
µν = D [see eq. (B.2.8)] and k ·σk ·σ = k2 [from eq. (2.50)] yields

[ΣDt]V = imfG1G2µ
2ǫ

∫
ddk

(2π)d
1

[(k + p)2 −m2
f ][k

2 −m2
V ]

[
D +

(ξ − 1)k2

k2 − ξm2
V

]

=
1

16π2
mfG1G2IFV (s;m

2
f ,m

2
V ) , (6.24.40)

where

IFV (s;x, y) ≡ −
3 + ξ

ǫ
− 3B(s;x, y)− ξB(s;x, ξy) + 2δMS, (6.24.41)

after dropping terms that vanish as ǫ→ 0. It is useful to note that for massless gauge bosons

IFV (x;x, 0) ≡ −
3 + ξ

ǫ
+ (3 + ξ)[ln(x/Q2)− 2] + 2δMS. (6.24.42)

The relevant couplings are obtained from the rules of Figs. J.1.2 and K.5.1:

for V = g : G1 = −G2 = gsT
a, (6.24.43)

for V = γ : G1 = −G2 = eQt, (6.24.44)

for V = Z : G1 = g(T t3 − s2WQt)/cW , G2 = gs2WQt/cW , (6.24.45)
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and mf = mt in each case. Adding up these contributions and taking s = m2
t , we have:

ΣDt =
mt

16π2

{
g2
[
(T t3 − s2WQt)s2WQt/c2W

]
IFV (m

2
t ;m

2
t ,m

2
Z)− (g2sCF + e2Q2

t )IFV (m
2
t ;m

2
t , 0)

+1
2Y

2
t IFS(m

2
t ;m

2
t ,m

2
hSM

)− 1
2Y

2
t IFS(m

2
t ;m

2
t , ξm

2
Z)− Y 2

b IFS(m
2
t ;m

2
b , ξm

2
W )

}
, (6.24.46)

where Yt = mtYb/mb was used on the last term.

In each of the self-energy functions above, there are poles in 1/ǫ, contained within the

functions IFV , IFS , IFV and IFS . In the MS or DR schemes, these poles are simply canceled

by counterterms, which have no other effect at one-loop order. The one-loop top quark pole

mass can now be obtained by plugging eqs. (6.24.22), (6.24.32), and (6.24.46) into eq. (6.24.2)

with ξ = 0, as discussed earlier. It is not hard to check that the terms from massless Nambu-

Goldstone boson exchange just cancel against the terms from the vector exchange diagrams that

came from ξm2
W and ξm2

Z .

As a simple example, consider the one-loop pole mass with only QCD effects included.

Then the result of eq. (6.24.2) has no imaginary part. Taking the square root (and dropping a

two-loop order part) yields the well-known result [225]:

Mt,pole = mt(1 +
1
2ΣLt +

1
2ΣRt) + ΣDt

= mt

(
1− CF g

2
s

16π2

[
IFV (m

2
t ;m

2
t , 0) + IFV (m

2
t ;m

2
t , 0)

])

= mt

(
1 +

αs
4π
CF

[
5− δMS − 3 ln(m2

t/Q
2)
])
. (6.24.47)

As another check, consider the imaginary part of the pole squared mass of the top quark. At

leading order, eq. (6.24.2) implies:

Γt = −Im[mt(ΣLt +ΣRt) + 2ΣDt]

=
mt

16π2
Im
[g2
2
IFV (m

2
t ;m

2
b ,m

2
W ) + (Y 2

t + Y 2
b )IFS(m

2
t ;m

2
b , ξm

2
W ) + 2Y 2

b IFS(m
2
t ;m

2
b , ξm

2
W )
]

=
1

32π2mt

{
(g2 + Y 2

t + Y 2
b )(m

2
t +m2

b −m2
W )− 4Y 2

b m
2
t

}
Im[B(m2

t ;m
2
b ,m

2
W )]. (6.24.48)

The fact that the ξ dependence canceled here is a successful check of gauge-fixing invariance,

since the tadpole diagram in Fig. 6.24.1 does not contribute to the absorptive part of the self-

energy. One can express Im[B(s;x, y)] in terms of the triangle function [cf. eq. (6.1.11)],

Im[B(s;x, y)] =

{
0 for s ≤ (

√
x+
√
y)2,

πλ1/2(s, x, y)/s for s > (
√
x+
√
y)2.

(6.24.49)

Eq. (6.24.48) then reproduces the result of eq. (6.1.10) for the top quark width at leading order.
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6.25 Self-energy and pole mass of the gluino

The Feynman diagrams for the gluino self-energy are shown in Fig. 6.25.1. Since the gluino

is a Majorana fermion, we can use the general formalism of Section 4.6. We will compute the

self-energy functions Ξg̃ ≡ Ξg̃
g̃ and Ωg̃ ≡ Ωg̃g̃ defined in Fig. 4.6.3, and infer Ωg̃ ≡ Ωg̃g̃ from

the latter by replacing all Lagrangian parameters by their complex conjugates.70 At one-loop

order, it follows from the general result of eq. (4.6.23) that the complex pole squared mass of

the gluino is related to the tree-level mass mg̃ by

M2
g̃ − iMg̃Γg̃ =

[
m2
g̃(1 + 2Ξg̃) +mg̃(Ωg̃ +Ωg̃)

] ∣∣∣
s=m2

g̃+iε
. (6.25.1)

It is convenient to split the self-energy functions into gluon/gluino loop and squark/quark

loop contributions, as

Ξg̃ = [Ξg̃]g +
∑

q

∑

x=1,2

[Ξg̃]q̃x , and Ωg̃ = [Ωg̃]g +
∑

q

∑

x=1,2

[Ωg̃]q̃x , (6.25.2)

where the sum over q runs over the six squark flavors u, d, s, c, b, t, and x = 1, 2 corresponds to

the two squark mass eigenstates [i.e., the two appropriate linear combinations (for fixed squark

flavor) of q̃L and q̃R]. The gluon exchange contributions, following from the Feynman rules of

Fig. K.5.1, are:

−ip·σ [Ξg̃]g δab = µ2ǫ
∫

ddk

(2π)d
(−gsfaecσµ)

(
i(k + p)·σ

(k + p)2 −m2
g̃

)(
−gsf ebcσν

)

(−i
k2

)(
gµν + (ξ − 1)

kµkν

k2

)
, (6.25.3)

−i [Ωg̃]g δab = µ2ǫ
∫

ddk

(2π)d
(gsf

eacσµ)

(
img̃

(k + p)2 −m2
g̃

)(
−gsf ebcσν

)

(−i
k2

)(
gµν + (ξ − 1)

kµkν

k2

)
. (6.25.4)

The internal gluon and gluino lines carry SU(3)c adjoint representation index indices c and e

respectively, while the external gluinos on the left and right carry indices a and b respectively.

The gluino external momentum pµ flows from right to left, and the loop momentum kµ flows

clockwise. Comparing with the derivations of eqs. (6.24.20) and (6.24.40) in the previous sub-

section, and using −faecf ebc = f eacf ebc = δabCA [with CA = 3 for SU(3)c], we can immediately

conclude that

[Ξg̃]g = −
αs
4π
CAIFV (s;m

2
g̃, 0), (6.25.5)

[Ωg̃]g = −
αs
4π
CAmg̃IFV (s;m

2
g̃, 0), (6.25.6)

where the loop integral functions IFV and IFV were defined in eqs. (6.24.21) and (6.24.41).

70Suppressing the color degrees of freedom, Ξ, Ω and Ω are one-dimensional matrices, so we do not employ
boldface letters in this case.
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p

−ip·σ Ξg̃

=

g̃ g̃ g̃

g

+

g̃ q g̃

q̃x
+

g̃ q̄ g̃

q̃x

p

−iΩg̃

=

g̃ g̃ g̃

g

+

g̃ q q̄ g̃

q̃x
+

g̃ q̄ q g̃

q̃x

Figure 6.25.1: Self-energy functions for the gluino in supersymmetry. The external momen-
tum pµ flows from the right to the left. The loop momentum kµ in the text is taken to flow
clockwise. Spinor and color indices are suppressed. The index x = 1, 2 labels the two squark
mass eigenstates of a given flavor q = u, d, s, c, b, t. Both x and q must be summed over. The
external legs are amputated.

Next consider the virtual squark exchange diagrams contributing to Ξg̃. Labeling the quark

and squark with color indices j, k respectively, we have for each squark mass eigenstate:

−ip·σ [Ξg̃]q̃x δab = µ2ǫ
∫

ddk

(2π)d
(
−i
√
2gsT

ak
j Lq̃x

)( i(k + p)·σ
(k + p)2 −m2

q

)(
−i
√
2gsT

bj
k L

∗
q̃x

)( i

k2 −m2
q̃x

)

+µ2ǫ
∫

ddk

(2π)d

(
i
√
2gsT

aj
k R∗

q̃x

)( i(k + p)·σ
(k + p)2 −m2

q

)(
i
√
2gsT

bk
j Rq̃x

)( i

k2 −m2
q̃x

)
. (6.25.7)

This uses the Feynman rules shown in Fig. K.5.3, given in terms of the squark mixing parameters

Lq̃x andRq̃x defined in eq. (K.4.1). Using Tr[T aT b] = 1
2δ
ab and |Lq̃x |2+|Rq̃x |2 = 1, and comparing

to the derivation of eq. (6.24.12) of the previous subsection, we obtain:

[Ξg̃]q̃x = −αs
4π
IFS(s;m

2
q ,m

2
q̃x). (6.25.8)

Similarly, for the last two diagrams of Fig. 6.25.1, we obtain:

−i[Ωg̃]q̃x δab = µ2ǫ
∫

ddk

(2π)d

(
−i
√
2gsT

aj
k L∗

q̃x

)( imq

(k + p)2 −m2
q

)(
i
√
2gsT

bk
j Rq̃x

)( i

k2 −m2
q̃x

)

+µ2ǫ
∫

ddk

(2π)d

(
i
√
2gsT

ak
j Rq̃x

)( imq

(k + p)2 −m2
q

)(
−i
√
2gsT

bj
k L

∗
q̃x

)( i

k2 −m2
q̃x

)
, (6.25.9)

again using the Feynman rules shown in Fig. K.5.3. As before, j and k are the color indices

for the quark and the squark, respectively. Comparing to the derivation of eq. (6.24.34) of the

previous subsection, we obtain:

[Ωg̃]q̃x = −αs
2π
L∗
q̃xRq̃xmqIFS(s;m

2
q ,m

2
q̃x) . (6.25.10)

142



Summing up the results obtained above, and taking s = m2
g̃, we have:

Ξg̃ = −
αs
4π

[
CAIFV (m

2
g̃;m

2
g̃, 0) +

∑

q

∑

x=1,2

IFS(m
2
g̃;m

2
q ,m

2
q̃x)

]
, (6.25.11)

Ωg̃ = −
αs
4π

[
CAmg̃IFV (m

2
g̃;m

2
g̃, 0) + 2

∑

q

∑

x=1,2

L∗
q̃xRq̃xmqIFS(m

2
g̃;m

2
q ,m

2
q̃x)

]
. (6.25.12)

As previously noted, we can now write down Ωg̃ by replacing the Lagrangian parameters of

eq. (6.25.12) by their complex conjugates:

Ωg̃ = −
αs
4π

[
CAmg̃IFV (m

2
g̃;m

2
g̃, 0) + 2

∑

q

∑

x=1,2

Lq̃xR
∗
q̃xmqIFS(m

2
g̃;m

2
q ,m

2
q̃x)

]
. (6.25.13)

Inserting the results of eqs. (6.25.11)–(6.25.13) into eq. (6.25.1), one obtains the result [226,227]:

M2
g̃ − iMg̃Γg̃ = m2

g̃

[
1 +

αs
2π

{
CA
[
5− δMS − 3 ln

(
m2
g̃/Q

2
)]

−
∑

q

∑

x=1,2

[
IFS(m

2
g̃;m

2
q ,m

2
q̃x) + 2Re[L∗

q̃xRq̃x ]
mq

mg̃
IFS(m

2
g̃;m

2
q,m

2
q̃x)
]}]

, (6.25.14)

with δMS defined in eq. (6.24.5).

6.26 Triangle anomaly from chiral fermion loops

As our final example, we consider the anomaly in chiral symmetries for fermions, arising from

the triangle diagram involving three currents carrying vector indices.71 Since the anomaly is

independent of the fermion masses, we simplify the computation by setting all fermion masses

to zero. In four-component notation,72 the treatment of the anomaly requires care because of

the difficulty in defining a consistent and unambiguous γ5 and the epsilon tensor in dimensional

regularization [230, 231]. The same subtleties arise in two-component language, of course, but

in a slightly different form since γ5 does not appear explicitly.

We shall assemble all the (12 , 0) [left-handed] two-component fermion fields of the theory into

a multiplet ψj . For example, the fermions of the Standard Model are: ψj = (ℓk , ℓ̄k , νk , qiℓ , q̄iℓ),

where k = 1, 2, 3 and i = 1, 2, . . . , 6 are flavor labels and ℓ = 1, 2, 3 are color labels [see Table 5.1].

The two-component spinor indices are suppressed here. Let the symmetry generators be given

by hermitian matrices T a, so that the ψj transform as:

δψj = iθa(T a)j
kψk, (6.26.1)

for infinitesimal parameters θa. The matrices T a form a representation R of the generators

of the Lie algebra of the symmetry group. In general R will be reducible, in which case the

71The discussion here parallels that given in ref. [228], Section 22.3.
72For an excellent review of the computation of the chiral anomaly via four-component massless and massive

spinor triangle loops, see ref. [229].
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µ, a

k

j

−i(T a)j
k σµ or i(T a)j

k σµ

Figure 6.26.1: Feynman rule for the coupling of a current carrying vector index µ and corre-
sponding to the symmetry generator T a acting on (12 , 0) [left-handed] fermions. Spinor indices
are suppressed.

T a have a block diagonal structure, where each block separately transforms (irreducibly) the

corresponding field of ψj according to its symmetry transformation properties. Some or all of

these symmetries may be gauged. The Feynman rule for the corresponding currents is the same

as for external gauge bosons, as in Fig. 4.3.2 (but without the gauge couplings), and is shown

in Fig. 6.26.1.

Fig. 6.26.2 exhibits the two Feynman diagrams that contribute at one-loop to the three-

point function of the symmetry currents. Applying the σ-version of the Feynman rule for the

currents given in Fig. 6.26.1, and employing the Feynman rules of Fig. 4.2.1 (with m = 0) for

the propagators [traversing the loop in the direction dictated by eq. (4.4.2)], the sum of the two

triangle diagrams shown in Fig. 6.26.2 can be evaluated.

µ, a

ν, bρ, c k +A

k − p+Ak + q +A

p+ q

pq

µ, a

ν, bρ, c k +B

k + p+Bk − q +B

p+ q

pq

Figure 6.26.2: Triangle Feynman diagrams leading to the chiral fermion anomaly. Fermion
spinor and flavor indices are suppressed. The fermion momenta, as labeled, flow in the arrow
directions.

The resulting sum of loop integrals is

iΓabcµνρ = (−1)
∫

d4k

(2π)4
Tr

{
(−iσµT a)

i(k − p+A)·σ
(k − p+A)2

(−iσνT b)
i(k +A)·σ
(k +A)2

(−iσρT c)
i(k + q +A)·σ
(k + q +A)2

+(−iσµT a)
i(k − q +B)·σ
(k − q +B)2

(−iσρT c)
i(k +B)·σ
(k +B)2

(−iσνT b)
i(k + p+B)·σ
(k + p+B)2

}
, (6.26.2)

where the overall factor of (−1) is due to the presence of a closed fermion loop. The trace
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is taken over fermion flavor/group and spinor indices, both of which are suppressed. Because

the individual integrals are linearly divergent, we must allow for arbitrary constant four-vectors

Aµ and Bµ as offsets for the loop momentum when defining the loop integrations for the two

diagrams [232,233].

The persistence of the symmetry in the quantum theory for the currents labeled by µ, a and

ν, b and ρ, c implies the naive Ward identities:73

(p + q)µ iΓabcµνρ(−p− q, p, q) = fabdΠdcνρ(q) + facdΠbdνρ(p) , (6.26.3)

−pν iΓabcµνρ(−p− q, p, q) = f bcdΠdaρµ(p+ q) + f badΠcdρµ(q) , (6.26.4)

−qρ iΓabcµνρ(−p− q, p, q) = f cadΠdbµν(p) + f cbdΠadµν(p+ q) , (6.26.5)

where iΠabµν(p) is the one-loop current-current two-point function shown in Fig. 6.26.3.

iΠabµν(q) =

k

k + q

q q

µ, a ν, b

Figure 6.26.3: The one-loop contribution to the current-current two-point function. The
fermion momenta, as labeled, flow along the corresponding arrow directions.

By Lorentz covariance, Πabµν(p) is a rank-two symmetric tensor that is an even function of the

four-momentum p [cf. eq. (6.26.41)]. In eqs. (6.26.3)–(6.26.5), we have employed a convention

in which the arguments of iΓ correspond to the outgoing momentum of the external legs of the

corresponding one-loop Feynman diagrams, and the order of the momentum arguments matches

the order of the indices.

It is convenient to define the symmetrized three-point function by symmetrizing over the

indices a, b and c:

Aabcµνρ = 1
6 iΓ

abc
µνρ + [five permutations of a, b, c]. (6.26.6)

In terms of the symmetrized three-point function, the naive Ward identities imply

(p + q)µAabcµνρ = 0 , −pνAabcµνρ = 0 , and − qρAabcµνρ = 0 . (6.26.7)

We now perform the explicit diagrammatic computation to show that the naive Ward identi-

ties exhibited in eq. (6.26.7) are violated due to a quantum anomaly. Although the symmetrized

73The derivation of the Ward identities is most easily achieved by writing the three-point function in position
space as a vacuum expectation value of the time-ordered product of three currents. After taking the divergence
(with respect to the position of any one of the three currents) of the time-ordered product and using the fact that
the currents are conserved (∂µj

aµ = 0), the surviving terms can be evaluated using the equal-time commutation
relations, δ(x0 − y0)[ja0(x), jbν(y)] = ifabcjcν(x)δ4(x − y). Fourier-transforming the result yields the terms on
the right-hand side of eqs. (6.26.3)–(6.26.5). See refs. [234,235] for further details.
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three-point function is ultraviolet finite, the individual loop momentum integrals are divergent,

and must be defined with care. We do not regularize them by the usual procedure of continuing

to d = 4− 2ǫ dimensions, because the trace over sigma matrices crucially involves the antisym-

metric tensor with four indices, brought in by eqs. (B.2.26) and (B.2.27), for which there is no

consistent and unambiguous generalization outside of four dimensions. (This is related to the

difficulty of defining γ5 in the four-component spinor formalism.) The existence of the vectors A

and B corresponds to an ambiguity in the regulation procedure, which can be fixed to preserve

some of the symmetries, as we will see below.

Starting from eq. (6.26.2), it follows from eq. (E.2.8) that the symmetrized three-point

function is proportional to the group theory factor (often called the anomaly coefficient),

Dabc = 1
2Tr[{T

a,T b}T c] , (6.26.8)

where the numerical values of the Dabc depend on the representation R. As discussed in Ap-

pendix E, Dabc vanishes for all simple Lie groups, with the exception of SU(N) for N ≥ 3.

The Dabc are also non-vanishing in general for any non-semisimple compact Lie group, which

contains at least one U(1) factor.

First, consider the result for (p+ q)µAabcµνρ. This can be simplified by rewriting

(p+ q)µ = (k + q +A)µ − (k − p+A)µ , (6.26.9)

(p+ q)µ = (k + p+B)µ − (k − q +B)µ , (6.26.10)

in the first and second diagram terms, respectively, and then applying the formulae

v ·σ v ·σ = v2 , v ·σ v ·σ = v2 , (6.26.11)

which follow from eqs. (B.2.1) and (B.2.2). After rearranging the terms using the cyclic property

of the trace, we obtain:

(p + q)µAabcµνρ = −DabcTr[σκσνσλσρ]X
κλ,

= −2Dabc
[
Xνρ +Xρν − gνρXλ

λ + iǫκνλρX
κλ
]
, (6.26.12)

after applying eq. (B.2.26). (In our conventions, ǫ0123 = −1.) The integral Xκλ is given by:

Xκλ =

∫
d4k

(2π)4

[
(k − p+A)κ

(k − p+A)2
(k +A)λ

(k +A)2
− (k + q +A)κ

(k + q +A)2
(k +A)λ

(k +A)2

+
(k +B)κ

(k +B)2
(k − q +B)λ

(k − q +B)2
− (k +B)κ

(k +B)2
(k + p+B)λ

(k + p+B)2

]
. (6.26.13)

Naively, this integral appears to vanish, because the first term is equal to the negative of

the fourth term after a momentum shift k → k − p + A − B, and the second term is equal

to the negative of the third term after k → k + q + A − B. However, these momentum shifts
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are not valid for the individually divergent integrals. Instead, Xκλ can be evaluated by a Wick

rotation to Euclidean space, followed by isolating the terms that contribute for large k2 and are

responsible for the integral not vanishing, and then employing the divergence (Gauss’) theorem

in four dimensions to rewrite Xκλ as an angular integral over a three-sphere with radius tending

to infinity. This integral is initially evaluated at large but finite Euclidean k, with the limit

k →∞ taken at the end of the computation. For example, consider a smooth function f(k) of

the four-momentum k with the property that the integral
∫
d4kf(k) (6.26.14)

is at worst quadratically divergent. We define the even and odd parts of f(k), respectively, by:

fe(k) ≡ 1
2 [f(k) + f(−k)] , fo(k) ≡ 1

2 [f(k)− f(−k)] . (6.26.15)

It then follows that [234,236,237]
∫

d4k

(2π)4
[f(k + a)− f(k)] = i

(2π)4

[
2π2aµ lim

k→∞
kµk2fo(k) + π2aµaν lim

k→∞
kµk2

∂

∂kν
fe(k)

]

(6.26.16)

has a finite limit.74 In deriving this result, we have expanded f(k+a) in a Taylor expansion and

follow the procedure outlined above eq. (6.26.14). Note that the angular integration removes

the even parts of f(k) and ∂f/∂kν ≡ 2kν ∂f/∂k
2 from the right-hand side of eq. (6.26.16).

The “limits” in eq. (6.26.16) actually correspond to an average over the three-sphere at large

Euclidean k, and thus should be interpreted by the use of:

lim
k→∞

kµkν

k2
= 1

4g
µν , (6.26.17)

lim
k→∞

kµkνkρkλ

(k2)2
=

1

24

(
gµνgρλ + gµρgνλ + gµλgνρ

)
. (6.26.18)

For example, if

f(k) =
(k − p+A)κ(k +A)λ

(k − p+A)2(k +A)2
, (6.26.19)

then in evaluating eq. (6.26.16), it is sufficient to write:

fo(k) ≃ 1
2(k − p+A)κ(k +A)λ

[
1

(k2)2
+

2k ·(p− 2A)

(k2)3

]
− (k → −k)

≃ kκAλ − kλ(p−A)κ
(k2)2

+
2kκkλ k ·(p− 2A)

(k2)3
, (6.26.20)

where we have dropped terms that do not contribute to eq. (6.26.16) in the limit of k → ∞.

Similarly,
∂fe
∂kν
≃ gκνkλ + gλνkκ

(k2)2
− 4kκkλkν

(k2)3
. (6.26.21)

74If eq. (6.26.14) is linearly divergent, then the second term on the right-hand side of eq. (6.26.16) is zero. If
eq. (6.26.14) is logarithmically divergent or finite, then the right-hand side of eq. (6.26.16) vanishes.
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The evaluation of Xκλ is now straightforward [after using eqs. (6.26.17) and (6.26.18)]:

Xκλ =
i

96π2

[
gκλ(p + q)·(A+B) + (A− 2B)κ(p+ q)λ + (p+ q)κ(B − 2A)λ

]
. (6.26.22)

Hence, eq. (6.26.12) yields the result for the anomaly in the current labeled by µ, a:

(p+ q)µAabcµνρ =
i

48π2
Dabc

[
(p + q)ν(A+B)ρ + (A+B)ν(p + q)ρ + gνρ(p+ q)·(A+B)

−3iǫνρκλ(p+ q)κ(A−B)λ
]
. (6.26.23)

Repeating all of the steps starting with eq. (6.26.9), we similarly obtain:75

−pνAabcµνρ = −
i

48π2
Dabc

[
pρ(A+B)µ + pµ(A+B)ρ + gµρp·(A+B)− 3iǫρµκλp

κ(A−B + 2q)λ
]
,

(6.26.24)

−qρAabcµνρ = −
i

48π2
Dabc

[
qµ(A+B)ν + qν(A+B)µ + gµνq ·(A+B)− 3iǫµνκλq

κ(A−B − 2p)λ
]
.

(6.26.25)

Non-chiral anomalies will arise for all three of the currents (assumingDabc is non-vanishing),

unless we choose the arbitrary constant vectors A and B such that

A+B = 0 , (6.26.26)

with the result:

(p+ q)µAabcµνρ =
1

8π2
Dabcǫνρκλ(p+ q)κAλ, (6.26.27)

−pνAabcµνρ = − 1

8π2
Dabcǫρµκλp

κ(A+ q)λ, (6.26.28)

−qρAabcµνρ = − 1

8π2
Dabcǫµνκλq

κ(A− p)λ. (6.26.29)

If Dabc is non-vanishing, it is not possible to avoid an anomaly simultaneously in all three

symmetries, but one can still arrange for two of the symmetries to be non-anomalous. If one

wants an anomaly to arise only in the current labeled by µ, a (for example, if the symmetries

labeled by b, c are gauged), one must now choose A = p− q. The standard result follows:

(p + q)µAabcµνρ = − 1

4π2
Dabcǫνρκλp

κqλ, (6.26.30)

−pνAabcµνρ = 0, (6.26.31)

−qρAabcµνρ = 0. (6.26.32)

75Alternatively, one can simply note that eq. (6.26.24) follows from eq. (6.26.23) by making the replacements
µ→ ν, ν → ρ, ρ→ µ, A→ A+q, B → B−q, p→ q, and q → −p−q, while eq. (6.26.25) follows from eq. (6.26.23)
by making the replacements µ→ ρ, ν → µ, ρ→ ν, A→ A− p, B → B + p, p→ −p− q, and q → p.
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In particular, one cannot gauge all three symmetries labeled by a, b, c unless Dabc = 0.

If all three currents are identical, then by Bose symmetry the anomalies of the three currents

must coincide. This can be achieved by choosing A = 1
3(p − q), in which case,

(p+ q)µAabcµνρ = − 1

12π2
Dabcǫνρκλp

κqλ, (6.26.33)

−pνAabcµνρ = − 1

12π2
Dabcǫρµκλp

κqλ, (6.26.34)

−qρAabcµνρ = − 1

12π2
Dabcǫµνκλp

κqλ. (6.26.35)

Returning briefly to the original naive Ward identities given in eqs. (6.26.3)–(6.26.5), the

analysis above shows that these identities must be modified by an additional additive contribu-

tion given by the right-hand side of eqs. (6.26.27)–(6.26.29). In particular, there is no anomalous

contribution proportional to fabc. This can be checked explicitly by a diagrammatic computa-

tion of the two-point and three-point functions that appear in eqs. (6.26.3) and (6.26.5). We

use eqs. (E.2.12) and (E.2.16) to write

Tr(T aT bT c) = Dabc(R) +
i

2
I2(R)f

abc , (6.26.36)

where I2(R) is the index defined in eq. (E.2.1) and R is the representation of the generators T a.

For example, inserting this result in eq. (6.26.2), it follows that:

(p + q)µ iΓabcµνρ = −
[
DabcXκλ +

i

2
I2(R)f

abc Y κλ

]
Tr[σκσνσλσρ] , (6.26.37)

where the integral Y κλ is given by:76

Y κλ =

∫
d4k

(2π)4

[
(k − p)κ
(k − p)2

kλ

k2
− (k + q)κ

(k + q)2
kλ

k2
− kκ

k2
(k − q)λ
(k − q)2 +

kκ

k2
(k + p)λ

(k + p)2

]
. (6.26.38)

By letting k → −k in the third and fourth term in the integrand of eq. (6.26.38), we see that

Y κλ = Y λκ, and hence by eq. (B.2.26),

− i
2
I2(R)f

abc Y κλTr[σκσνσλσρ] = −iI2(R)fabc
[
2Yνρ − gνρYλλ

]
. (6.26.39)

Since no ǫ-tensor appears, we can evaluate this integral in d 6= 4 dimensions using the standard

techniques of dimensional regularization.

One can check that this result matches the diagrammatic calculation of the right-hand side

of eq. (6.26.27). In particular, Fig. 6.26.3 yields

iΠabµν(q) = (−1)
∫

d4k

(2π)4
Tr

[
(−iσµT a)

ik ·σ
k2

(−iσνT b)
i(k + q)·σ
(k + q)2

]

= −I2(R)δab Tr(σµσρσνσλ)
∫

d4k

(2π)4
kρ(k + q)λ

k2(k + q)2
, (6.26.40)

76Here Y κλ is obtained from Xκλ by setting A = B = 0, since we can use dimensional regularization for this
part of the computation as explained below eq. (6.26.38).
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where we have used eq. (E.2.1). Lorentz covariance implies that

iΠabµν(q) = δab
[
C1(q

2)gµν + C2(q
2)qµqν

]
, (6.26.41)

for some scalar functions C1 and C2. It follows that Πabµν(q) = Πabµν(−q) and Πabµν(q) = Πabνµ(q).

Consequently, we can write:

Πabµν(q) =
i

2
I2(R)δ

ab Tr(σµσρσνσλ + σνσρσµσλ)

∫
d4k

(2π)4
kρ(k + q)λ

k2(k + q)2
, (6.26.42)

and so no ǫ-tensor appears in the evaluation of the trace. As above, we are now free to evaluate

the integral in d 6= 4 dimensions. Comparing eqs. (6.26.37) and (6.26.38) to eq. (6.26.42), and

using eq. (6.26.27), the end result is

(p+ q)µ iΓabcµνρ(−p− q, p, q) = I2(R)f
abc [Πνρ(q)−Πνρ(p)] +

1

8π2
Dabc(R)ǫνρκλ(p+ q)κAλ ,

(6.26.43)

where we have written Πabνρ ≡ I2(R)δabΠνρ. Indeed the terms on the right-hand side proportional

to fabc match those of the naive Ward identity given in eq. (6.26.3). As previously asserted, the

anomaly only resides in the contributions to the Ward identity proportional to Dabc.

In writing down eq. (6.26.2), we chose to use the rules with σ matrices for the current

vertices and σ matrices for the massless fermion propagators. If we had chosen the opposite

prescription (i.e., σ matrices for the current vertices and σ matrices for the massless fermion

propagators), then the order of the factors inside the trace of eq. (6.26.2) would have been

reversed.77 Instead of eq. (6.26.12), we would have obtained

(p+ q)µAabcµνρ = −Dabc Tr[σκσνσλσρ] X̄
κλ = −2Dabc

[
X̄νρ + X̄ρν − gνρX̄λ

λ − iǫκνλρX̄κλ
]
,

(6.26.44)

after applying eq. (B.2.27). The integral X̄κλ is simply related to Xκλ by:

X̄κλ = Xλκ . (6.26.45)

Inserting eq. (6.26.45) into eq. (6.26.44), we immediately reproduce the result of eq. (6.26.12),

as expected.

It is instructive to examine the case of massless QED. The terms of the Lagrangian involving

the electron fields is given by

L = iχ†σµDµχ+ iη†σµDµη , (6.26.46)

where Dµ ≡ ∂µ + iQAµ is the covariant derivative, and Q is the charge operator. Here, we

identify χ as the two-component (left-handed) electron field and η as the two-component (left-

handed) positron field. The corresponding eigenvalues of the charge operator are: Qχ = −eχ
77The arrowed fermion lines in the loop must be traversed in the direction parallel [antiparallel] to the arrow

directions when the σ [σ] versions of the propagator rule are employed, as indicated in eq. (4.4.2) [and in the
discussion that follows]. This rule determines the order of the factors inside the spinor trace.
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and Qη = +eη (where e > 0 is the electromagnetic gauge coupling constant, or equivalently the

electric charge of the positron).

At the classical level, the massless QED Lagrangian [eq. (6.26.46)] is invariant under a

U(1)V×U(1)A global symmetry. Under a U(1)V ×U(1)A transformation specified by the in-

finitesimal parameters θV and θA,

U(1)V : δχ = ieθV χ , δη = −ieθV η , (6.26.47)

U(1)A : δχ = iθAχ , δη = iθAη . (6.26.48)

We can combine these equations into a two-dimensional matrix equation,

δψj = −iθa(Ta)j
kψk , where ψ =


χ

η


 , (6.26.49)

and the index a takes on two values, a = V , A. It follows that the U(1)V×U(1)A generators are

given by

TV = e


−1 0

0 1


 , for U(1)V , (6.26.50)

TA =


−1 0

0 −1


 , for U(1)A . (6.26.51)

The classically conserved Noether currents corresponding to the U(1)V×U(1)A global sym-

metry are the vector and axial currents:78

JµV = −e(χ†σµχ− η†σµη) , (6.26.52)

JµA = −χ†σµχ− η†σµη . (6.26.53)

Since the U(1)V symmetry is gauged, we demand that this symmetry should be anomaly free.

Thus, we make use of eqs. (6.26.30)–(6.26.32), where we identify the index pair µ, a with the

axial vector current and the index pairs ν, b and ρ, c with the vector current. Thus, we compute:

DAV V = Tr (TATV TV ) = −2e2 . (6.26.54)

Moreover, for an abelian symmetry group, fabc = 0. Hence, using eq. (6.26.30) [which also

applies in this case to the unsymmetrized three-point function], the U(1) axial vector anomaly

equation reads:

(p + q)µ iΓAV Vµνρ =
e2

2π2
ǫνρκλp

κqλ , (6.26.55)

78Note that the interaction Lagrangian for massless QED is Lint = −JµV Aµ, as expected. This accounts for the
factor of e in the definition of the vector current. The axial vector current does not couple to the photon field;
hence no coupling constant is included in its definition.
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in agreement with the well-known result.79

We now convert eq. (6.26.55) into an operator equation. Consider the process of two photon

production by an axial vector current source [239]. First, we note that ∂µJ
µ
A(x) = i[Pµ, JAµ(x)],

where Pµ is the momentum operator. It follows that:

〈
p , q | ∂µJµA(0) | 0

〉
= i 〈p , q | [Pµ , JAµ(0)] | 0〉 = i(p+ q)µ 〈p , q |JAµ(0)| 0〉 . (6.26.56)

We identify the S-matrix amplitude for the two photon production as:

iΓAV Vµνρ εν ∗(p)ερ ∗(q) = 〈p , q | − iJAµ(0)| 0〉 , (6.26.57)

where ε(p) and ε(q) are the polarization vectors for the final state photons. Note that the factor

of −i on the right-hand side of eq. (6.26.57) has been inserted to be consistent with the Feynman

rule for the axial vector current insertion given in Fig. 6.26.1. Thus, using eqs. (6.26.55)–

(6.26.57), we end up with [114]:

〈
p , q | ∂µJµA(0) | 0

〉
= − e2

2π2
ǫνρκλε

ν ∗(p)ερ ∗(q)pκqλ

= − e2

16π2
〈p , q | ǫκνλρF κνF λρ(0) |0〉 , (6.26.58)

where ǫκνλρF
κνF λρ = 4ǫκνλρ(∂

κAν)(∂λAρ) has been used to eliminate the photon fields in favor

of a product of electromagnetic field strength tensors. In deriving eq. (6.26.58), an additional

factor of two arises due to two possible contractions of the photon fields with the external states.

We thus obtain the operator form for the axial vector anomaly:80

∂µJ
µ
A = − e2

8π2
F λρF̃λρ , (6.26.59)

where the dual electromagnetic field strength tensor is defined by F̃λρ ≡ 1
2ǫκνλρF

κν .

As a final example, we examine the anomalous baryon number and lepton number currents

in the theory of electroweak interactions [240–242]. For simplicity of notation, we consider a

one-generation model. The baryon number current is a vector current given by:

JµB = 1
3

[
u†σµu+ d†σµd− ū†σµū− d̄†σµd̄

]
, (6.26.60)

following the particle naming conventions of Table 5.1. Consider the process of gauge boson pair

production by a baryon number current source. It is convenient to work in the interaction basis

of gauge fields, {W µa , Bµ}, where W µa is an SU(2)-triplet of gauge fields and Bµ is a U(1)Y

hypercharge gauge field. We consider triangle diagrams where one generation of quarks runs in

79This result was first obtained by Adler [238]. In comparing eq. (6.26.55) with Adler’s result, note that the
normalization of the triangle amplitude in ref. [238] differs by a factor of (2π)4 and the opposite sign convention
for ǫ0123 is employed.

80In the literature, eq. (6.26.59) often occurs with the opposite sign due to a sign convention for the Levi-Civita
ǫ-tensor that is opposite to the one employed in this review. Here, we have reproduced the form given in ref. [114].
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the loop. The external vertices consist of the baryon number current source and the two gauge

bosons.

The generators corresponding to the SU(2) gauge boson vertices are given in block diagonal

form by:

T b = g diag

(
τ b

2
⊗ 13×3 , 0 , 0

)
, (6.26.61)

where the τ b are the Pauli matrices, 13×3 is the identity matrix in color space, and ⊗ is the

Kronecker product.81 We have included a factor of the weak SU(2) coupling g in the definition of

T b, since the Feynman rule given by Fig. 6.26.1 does not explicitly include the gauge coupling.

Likewise, the generators corresponding to the U(1)Y gauge boson vertices are given in block

diagonal form by (cf. Table J.1):

Y = g′ diag
(
1
612×2 ⊗ 13×3 , −2

313×3 ,
1
313×3

)
, (6.26.62)

where 12×2 is the identity matrix in weak isospin space, and g′ is the U(1)Y hypercharge gauge

coupling. Finally, the generator corresponding to the baryon number current source is given in

block diagonal form by:

B = 1
3diag (12×2 ⊗ 13×3 , −13×3 , −13×3) . (6.26.63)

Consider first the production of two SU(2)-triplet gauge fields. We put T a = B and

associate the indices b and c with the SU(2)-triplet gauge bosons. A simple calculation yields

DBbc = g2 Tr(BT bT c) = 1
2g

2δbc , (6.26.64)

where the superscript index B refers to the baryon number current. Since the gauged weak

SU(2) and hypercharge U(1)Y currents must be anomaly free for the mathematical consistency

of the electroweak theory, it follows that eqs. (6.26.30)–(6.26.32) apply. That is, the symmetrized

amplitude for the production of SU(2) gauge boson pairs by a baryon number source is anoma-

lous:

(p + q)µABbcµνρ = −
g2

8π2
δbcǫνρκλp

κqλ . (6.26.65)

Next, consider the production of two U(1)Y hypercharge gauge fields. A simple calculation

yields

DBY Y = g′ 2 Tr(BY 2) = −1
2g

′ 2 . (6.26.66)

That is, the symmetrized amplitude for the production of U(1)Y gauge boson pairs by a baryon

number source is anomalous:

(p+ q)µABY Yµνρ =
g′ 2

8π2
ǫνρκλp

κqλ . (6.26.67)

81The Kronecker product of an n × n matrix and an m ×m matrix is an nm × nm matrix. In addition, the
following two properties of the Kronecker product are noteworthy [159, 243]: (i) (A ⊗ B)(C ⊗ D) = AC ⊗ BD,
and (ii) Tr(A⊗B) = TrA TrB.
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Finally, the symmetrized amplitude for the associated production of an SU(2)-triplet and U(1)Y

hypercharge gauge field exhibits no anomaly as the corresponding DBY c = gg′ Tr(BY T c) = 0.

The symmetrized amplitudes of the triangle diagrams involving a baryon number current

source and a pair of SU(2) or U(1)Y gauge bosons are anomalous. Since the baryon number

current is a vector current, we conclude that the source of the anomaly is a VVA triangle diagram

in which one of the gauge boson currents is vector (V) and the other gauge boson current is axial

vector (A). Nevertheless, the gauge boson axial vector current must be conserved, as noted above.

Hence, the baryon number vector current must be anomalous [240]. In eqs. (6.26.55)–(6.26.58),

we showed how to derive the operator form of the anomaly equation from the anomalous non-

conservation of the symmetrized triangle amplitude. Following the same set of steps starting

with eqs. (6.26.65) and (6.26.67), one obtains the anomalous non-conservation of the baryon

number vector current, in a model with Ng quark generations [55,241,242]:

∂µJ
µ
B =

g2Ng

32π2
W λρbW̃ b

λρ −
g′ 2Ng

32π2
BλρB̃λρ , (6.26.68)

where Bλρ and

W b
λρ = ∂λW

b
ρ − ∂ρW b

λ − gǫbcaW c
λW

a
ρ , (6.26.69)

are the field strength tensors for the hypercharge U(1)Y gauge boson and SU(2) gauge boson

fields, respectively.82 Note that for the non-abelian SU(2) gauge fields W a
µ ,

W λρb W̃ b
λρ = 2ǫκνλρ

[
(∂κW

b
ν )(∂λW

b
ρ )− gǫabc(∂κW a

ν )W
b
λW

c
ρ

]

= 2ǫκνλρ∂κ

[
W b
ν (∂λW

b
ρ )− 1

3gǫ
abcW a

νW
b
λW

c
ρ

]
. (6.26.70)

Strictly speaking, the triangle graphs yield only the terms on the right-hand side of eq. (6.26.68)

that are quadratic in the gauge fields. To obtain the corresponding terms that are cubic in

the gauge terms, one must compute the anomalies that arise from VVVA and VAAA box dia-

grams [234,244].

For completeness, we re-express the anomalous non-conservation of the baryon number

current in terms of the mass eigenstate SU(2)×U(1)Y gauge fields:

∂µJ
µ
B =

g2Ng

16π2
W λρ+W̃−

λρ −
g2Ng

32π2c2W
ZλρZ̃λρ −

egNg

32π2cW

[
ZλρF̃λρ + F λρZ̃λρ

]
, (6.26.71)

where cW ≡ cos θW , andW±
λρ, Zλρ and Fλρ are theW

±, Z and the electromagnetic field strength

tensors, respectively.

By a similar analysis, one can also compute the anomalous non-conservation of the lepton

number vector current,

JµL = ℓ†σµℓ+ ν†σµν − ℓ̄†σµℓ̄ , (6.26.72)

82We again caution the reader that a different overall sign in eq. (6.26.68) often appears in the literature due
to a sign convention for the Levi-Civita ǫ-tensor that is opposite to the one employed in this review. Here, we
have chosen ǫ0123 = +1.
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due to triangle diagrams with Ng generations of leptons running in the loop. In the one-

generation calculation, the relevant generators are:

T b = g diag

(
τ b

2
, 0

)
, Y = g′ diag

(
−1

212×2 , 1
)
, L = diag (12×2 , −1) . (6.26.73)

Thus, we end up with:

DLbc = 1
2g

2δbc , DLY Y = −1
2g

′ 2 , DLY c = 0 . (6.26.74)

Thus, in the Standard Model with Ng generations of quarks and leptons,

∂µJ
µ
L = ∂µJ

µ
B . (6.26.75)

In particular, the B − L current is conserved and anomaly free.
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Appendix A: Metric and sigma matrix conventions

In this review, the metric tensor of four-dimensional Minkowski space is taken to be:83

gµν = gµν = diag(+1,−1,−1,−1) , (A.1)

where µ, ν = 0, 1, 2, 3 are spacetime vector indices. Contravariant four-vectors (e.g. positions,

momenta, gauge fields and currents) are defined with raised indices, and covariant four-vectors

(e.g. derivatives) with lowered indices:

xµ = (t ; ~x) , (A.2)

pµ = (E ; ~p) , (A.3)

Aµ(x) = (Φ(~x, t) ; ~A(~x, t)) , (A.4)

Jµ(x) = (ρ(~x, t) ; ~J(~x, t)) , (A.5)

∂µ ≡
∂

∂xµ
= (∂/∂t ; ~∇) , (A.6)

in units with c = 1. The totally antisymmetric pseudo-tensor ǫµνρσ is defined such that

ǫ0123 = −ǫ0123 = +1 . (A.7)

Eqs. (A.2)–(A.7) are taken to be independent of the metric signature convention.

The sigma matrices are defined with a raised (contravariant) index to be independent of

the metric signature convention,

σµ = (12×2 ; ~σ) , σµ = (12×2 ; −~σ) , (A.8)

where the three-vector of Pauli matrices is given by ~σ ≡ (σ1 , σ2 , σ3) [cf. eq. (2.27)] and 12×2

is the 2× 2 identity matrix. The corresponding quantities with lower (covariant) index are:

σµ = gµνσ
ν = (12×2 ; −~σ) , σµ = gµνσ

ν = (12×2 ; ~σ) . (A.9)

Various identities involving products of sigma matrices are given in Appendix B. The generators

of the (12 , 0) and (0, 12) representations of the Lorentz group are, respectively, given by:

σµν ≡ i

4
(σµσν − σνσµ) , σµν ≡ i

4
(σµσν − σνσµ) . (A.10)

In adopting the above definition of the sigma matrices, we differ from the corresponding

conventions of Wess and Bagger [68] and Bilal [82]. TheWess/Bagger and Bilal (WBB) definition

of the sigma matrices can be written (with lowered index µ) as:84

(σWBB)µαβ̇ = σ0αγ̇σ
γ̇δ
µ σ0δβ̇ = (12×2 ; ~σ) , (A.11)

(σWBB)α̇βµ = σα̇γ0 σµγδ̇σ
δ̇β
0 = (12×2 ; −~σ) . (A.12)

83An otherwise identical version of this paper with the opposite metric signature is also available; see footnote 2.
84Although Wess/Bagger and Bilal employ opposite metric signatures of g00 = −1 and g00 = +1, respectively,

their definitions of σµ and σµ (with covariant index µ) coincide. Note that the spinor structure of the σ and σ
matrices and the definitions of the various (two-index and four-index) epsilon tensors [cf. eqs. (2.19) and (A.7)]
are identical in both the WBB conventions and in our conventions.
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One consequence of the WBB definition of σ and σ is that γ5 = diag(12×2 , −12×2) in the

chiral representation [cf. eq. (G.1.2)]. This associates a lowered undotted [raised dotted] two-

component spinor with a right-handed [left-handed] four-component spinor [cf. eqs. (G.1.6) and

(G.1.8)]. Indeed, this was the common convention in the older literature (e.g., see refs. [35,36,38,

39,41,58]).85 However, in the modern formulation of electroweak theory in terms of left-handed

fermions, it is now more common to associate a lower undotted [raised dotted] two-component

spinor with a left-handed [right-handed] four-component spinor. This is the motivation for our

conventions for the sigma matrices given in eqs. (A.8) and (A.9).

In order to facilitate the comparison with the metric signature with g00 = −1, we provide

the key ingredients needed for translating between Minkowski metrics of opposite signature.

In our conventions [cf. eqs. (A.2)–(A.9)], each of the following objects (with the Lorentz index

heights as shown) is defined independently of the metric signature:

xµ , pµ , ∂µ , σ
µ , σµ , Sµ , Jµ , Aµ , Dµ , G

µ
ν , γ

µ , γ5 , δ
µ
ν , ǫ

µνρσ , ǫµνρσ , [no sign change],

(A.13)

but the following objects change sign when the Minkowski metric signature is reversed:

gµν , g
µν , xµ , pµ , ∂

µ , σµ , σµ , Sµ , Jµ , Aµ , D
µ , Gµν , Gµν , γµ , [sign change]. (A.14)

Here, the spin four-vector Sµ is defined in eq. (3.1.15), Jµ is any conserved current, Aµ is

any gauge vector potential, and Dµ and Gµν are the corresponding covariant derivative and

antisymmetric tensor field strength, respectively. The Dirac gamma matrices are defined in

eq. (G.1.2). The list of eq. (A.14) can be deduced from eq. (A.13) by using the metric tensor

and its inverse to lower and raise Lorentz indices, simply because each metric or inverse metric

changes sign when the metric signature is reversed. Given any other object not included in

eqs. (A.13) and (A.14), it is straightforward to make the appropriate assignment by considering

how the object is defined. For example, we must assign σµν , σµν , σ
µν and σµν to the list of

eq. (A.13), based on the definitions given in eqs. (2.69) and (2.70). In general, objects that do

not carry Lorentz vector indices (including all fermion spinor fields and spinor wave functions)

are defined to be the same in the two metric signatures, with the obvious exception of scalar

quantities formed from an odd number of objects from the list of eq. (A.14). For example, the dot

product of two four-vectors may or may not change sign when the Minkowski metric signature

is reversed. By writing out the dot product explicitly using the metric tensor to contract the

indices, one can use eqs. (A.13) and (A.14) to determine the behavior of a dot product under the

reversal of the metric signature. In particular, p·A changes sign whereas p·σ does not change

sign, when the Minkowski metric signature is reversed.

The translation between Minkowski metrics of opposite signatures is now straightforward.

Given any relativistic covariant quantity or equation in the convention where g00 = +1, one need

85This convention persists in the literature of the spinor helicity method (cf. footnote 156 in Appendix I.2).
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only employ eqs. (A.13) and (A.14) to obtain the same quantity or equation in the convention

where g00 = −1, and vice versa.86

As an example, let us verify that under the reversal of the Minkowski metric signature the

gauge covariant derivative Dµ does not change sign and the gauge field strength tensor Gµν

changes sign. In the metric signature with g00 = +1, we define

Dµ ≡ IdR∂µ + igAµ , (g00 = +1) , (A.15)

where Aµ ≡ AaµT a is the matrix gauge field for a representation R of dimension dR, and IdR is

the dR×dR identity matrix. Since under the reversal of the metric signature, ∂µ does not change

sign [according to eq. (A.13)] whereas Aµ changes sign [according to eq. (A.14)], it follows that

the quantity defined in the metric signature where g00 = −1,

Dµ ≡ IdR∂µ − igAµ , (g00 = −1) (A.16)

has the same overall sign as eq. (A.15). It follows that when the metric signature is reversed,

Dµ does not change sign whereas Dµ ≡ gµνDν does change sign, as indicated in eqs. (A.13) and

(A.14). Next, consider the matrix gauge field strength tensor Gµν ≡ GaµνT a, defined by

Gµν ≡ −i
g

[Dµ , Dν ] = ∂µAν − ∂νAµ + ig[Aµ , Aν ] , (g00 = +1) , (A.17)

where the commutator [Dµ , Dν ] is an operator that acts on fields that transform with respect

to an arbitrary representation R. In the metric signature with g00 = −1, we define the gauge

field strength tensor as a commutator of covariant derivatives with the opposite overall sign:

Gµν ≡ i

g
[Dµ , Dν ] = ∂µAν − ∂νAµ − ig[Aµ , Aν ] , (g00 = −1) , (A.18)

where Dµ is now defined as in eq. (A.16). Since under a reversal of the metric signature, Aµ

does not change change sign [according to eq. (A.13)] whereas ∂µ changes sign [according to

eq. (A.14)], it follows that Gµν and Gµν ≡ gµρgνσG
ρσ do indeed change sign when the metric

signature is reversed, as stated in eq. (A.14).

As another simple illustration, consider the σ-matrix identity,

σµσνσρ = gµνσρ − gµρσν + gνρσµ − iǫµνρκσκ , (g00 = +1) , (A.19)

In the opposite metric signature with g00 = −1, we apply the results of eqs. (A.13) and (A.14)

and then multiply both sides of the equation by −1 to obtain:

σµσνσρ = −gµνσρ + gµρσν − gνρσµ + iǫµνρκσκ , (g00 = −1) . (A.20)

86Note that for any relativistic covariant term appearing additively in a valid equation, the relative sign that
results from changing between Minkowski metrics of opposite signature is simply given by S = (−1)N , where
N ≡ Nm + Nd + NG + . . .. Here Nm is the number of metric tensors appearing either explicitly or implicitly
through contracted upper and lower indices, Nd is the number of spacetime and/or covariant derivatives, NG is
the number of gauge field strength tensors, and the ellipsis (. . .) accounts for any additional quantities whose
contravariant forms (with all Lorentz indices raised) appear in the list of eq. (A.14).
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Finally, in the sigma matrix conventions of Wess/Bagger [68] and Bilal [82], both eqs. (A.19)

and (A.20) are modified by changing the overall sign of iǫµνρκσκ. In general, to convert the

identities of Appendix B to the conventions of WBB, one must first convert (if necessary) to the

appropriate metric signature, and then interchange σ ↔ σ [cf. eqs. (A.11) and (A.12)].

We end this Appendix with a brief summary of our conventions for four-dimensional Eu-

clidean space. The Euclidean components of the coordinates [represented in Minkowski space

by the contravariant four-vector, xµ = (x0 ; ~x), for µ = 0, 1, 2, 3], are defined as

xµE = xE µ = (~x , x4
E
) , x4

E
= xE4 ≡ ix0 , (µ = 1, 2, 3, 4) . (A.21)

The four-momentum operator in Minkowski space is pµ = i∂µ = i(∂/∂t , −~∇). Following the

conventions of ref. [245], the Euclidean counterpart of the momentum operator is

pµE = pEµ = (~p , p4E) = −i∂µE = −i(~∇ , ∂/∂x4E) , p4E = pE4 = ip0 , (A.22)

The Minkowski space Green functions are obtained from Euclidean space Green functions by

means of a Wick rotation [123, 245, 246] of x4E ≡ ix0 in a counterclockwise sense.87 Scalar

products of Euclidean four-vectors are carried out by employing the Euclidean metric tensor

δµν = δµν = diag(1 , 1 , 1 , 1). For example, the Euclidean counterpart of −p·x = −p0x0 + ~p·~x

is pµEx
µ
E = ~p·~x+ p4Ex

4
E, etc. Given any tensorial equation in Euclidean space, the heights of the

indices is irrelevant. Consequently, one can simply place all indices at the same height (either

all raised or all lowered), with an implied sum over a pair of repeated indices.

One can also introduce Euclidean sigma matrices [247]:

σµE ≡ (−i~σ , σ 4
E) , σµE ≡ (i~σ , σ 4

E) , where σ 4
E = σ 4

E ≡ 12×2 , (A.23)

which satisfy:88

σµEσ
ν
E + σνEσ

µ
E = 2δµν , σµEσ

ν
E + σνEσ

µ
E = 2δµν . (A.24)

The four-dimensional rotation group in Euclidean space is SO(4), which is locally equivalent to

SU(2)×SU(2). It possesses two independent pseudo-real two-dimensional spinor representations

(12 , 0) and (0, 12 ) [not related by hermitian conjugation in contrast to the Lorentz group], with

corresponding hermitian generators σµνE and σµνE , respectively:

σµνE =
i

4

(
σµEσ

ν
E − σνEσµE

)
, σµνE =

i

4

(
σµEσ

ν
E − σνEσµE

)
. (A.25)

These tensors are anti-self-dual and self-dual, respectively [120],

σµνE = −1
2ǫ
µνρτσρτE , σµνE = 1

2ǫ
µνρτσρτE , (A.26)

87Expressing the corresponding Green functions as Fourier transforms of momentum-space Green functions,
one must simultaneously Wick-rotate p4E ≡ ip0 in a clockwise sense to avoid singularities in the complex p0-plane.

88It is seemingly more natural to define σµE ≡ (~σ , σ4
E) and σ

µ
E ≡ (−~σ , σ4

E) where σ
4
E = σ4

E ≡ i12×2, in which
case one must replace δµν with −δµν in eq. (A.24). Nevertheless we prefer eq. (A.23), which avoids an overall minus
sign in the respective anticommutation relations of the Euclidean sigma and gamma matrices [cf. footnote 133].
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where the totally antisymmetric Levi-Civita tensor is defined in Euclidean space such that

ǫ1234 = ǫ1234 = +1. One can express σµνE and σµνE in terms of the ’t Hooft eta symbols [248],

σµνE = −1
2η

kµνσk , σµνE = −1
2η

kµνσk , (A.27)

where µ, ν = 1, 2, 3, 4 and there is an implicit sum over k = 1, 2, 3. Equivalently,

σµEσ
ν
E = δµν + iηkµνσk , σµEσ

ν
E = δµν + iηkµνσk . (A.28)

The ’t Hooft symbols η and η satisfy self-duality and anti-self-duality properties, respectively:

ηkµν = 1
2ǫ
µνρληkρλ , ηkµν = −1

2ǫ
µνρληkρλ , (A.29)

and are explicitly given by:

ηkij = ηkij = ǫijk , ηkj4 = −ηk4j = ηk4j = −ηkj4 = δkj , ηk44 = ηk44 = 0 . (A.30)

For a more comprehensive treatment of two-component spinors in Euclidean space, see ref. [128].

Appendix B: Sigma matrix identities and Fierz identities

In Section 2, we derived a number of identities involving σµ, σµ, σµν and σµν . When considering

a theory regularized by dimensional continuation [124], one must give meaning to the sigma

matrices and their respective identities in d 6= 4 dimensions. In many cases, it is possible to

reinterpret the sigma matrix identities for d 6= 4. However, the Fierz identities, which depend on

the completeness of {12×2 , σ
i} in the vector space of 2 × 2 matrices, do not have a consistent,

unambiguous meaning outside of four dimensions (e.g., see refs. [249–252] and references therein).

In Appendix B.1, we exhibit a comprehensive list of identities from which many generalized Fierz

identities can be derived. In Appendix B.2, we examine the class of sigma matrix identities that

can unambiguously be extended to d 6= 4 dimension and thus can be employed in the context of

dimensional regularization.

B.1 Two-component spinor Fierz identities

We begin with the basic identity for 2× 2 matrices [77],

δabδcd =
1
2

[
δadδcb + σiadσ

i
cb

]
, (B.1.1)

where there is an implicit sum over the repeated superscript i = 1, 2, 3. Eq. (B.1.1) is a conse-

quence of the completeness of {12×2 , σ
i} in the four-dimensional vector space of 2× 2 matrices.

In particular, we denote the four-dimensional vector spaces of 2×2 matrices labeled by undotted

and dotted spinor indices, respectively, by V and V. It is also useful to consider matrices with

one undotted and one dotted index. Hence, we construct the Kronecker product V ⊗ V, which
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is a sixteen-dimensional vector space. The sixteen linearly independent matrices taken from the

set,89

Γ ≡
{
δα
β , σµ

αβ̇
, σµνα

β , δα̇β̇ , σµ α̇β , σµν α̇β̇

}
, (B.1.2)

serve as a complete basis set for V ⊗ V. Elements of Γ will be denoted by Γ(n) (n = 1, 2, . . . , 6).

Starting from eq. (B.1.1), one can establish a set of 21 identities of the following form:

(Γ(k))IAB(Γ
(n))JCD =

∑

p,q,K,L

(Cknpq )
IJ
KL (Γ

(p))KAD(Γ
(q))LCB , (B.1.3)

where each label I, J , K and L can represent zero, one or two Lorentz spacetime indices, and

A, B, C andD represent two-component spinor indices, each of which may be undotted or dotted

and in the lowered or raised position as appropriate. The sum in eq. (B.1.3) is taken over the

matrices specified in eq. (B.1.2), and the Cknpq are numerical coefficients [cf. eqs. (B.1.5)–(B.1.25)].

Let us multiply eq. (B.1.3) by four (commuting or anticommuting) two-component spinors

Z1AZ2BZ3CZ4D, where Zi stands for either the undaggered or daggered spinor zi or z
†
i , depend-

ing on whether the corresponding spinor index is undotted or dotted. This procedure yields

generalized Fierz identities of the form [74,77,85,88]:

(Z1Γ
(k)IZ2)(Z3Γ

(n)JZ4) = (−1)A
∑

p,q,K,L

(Cknpq )
IJ
KL(Z1Γ

(p)KZ4)(Z3Γ
(q)LZ2) , (B.1.4)

where (−1)A = +1 [−1] for commuting [anticommuting] spinors.90

The explicit expressions for the 21 identities represented by eq. (B.1.3) are as follows.

δα
βδβ̇ α̇ = 1

2σ
µ
αα̇σ

β̇β
µ , (B.1.5)

δα
β
δγ
τ
= 1

2

[
δα
τ
δγ
β
+ (σµν)α

τ
(σµν)γ

β
]
, (B.1.6)

δα̇β̇δ
γ̇
τ̇ =

1
2

[
δα̇τ̇δ

γ̇
β̇ + (σµν)α̇τ̇ (σµν)

γ̇
β̇

]
, (B.1.7)

δα
βσµγα̇ = 1

2σ
µ
αα̇δγ

β − iσν αα̇(σµν)γβ , (B.1.8)

δα
βσµ β̇γ = 1

2δα
γσµ β̇β + i(σµν)α

γσβ̇βν , (B.1.9)

δα̇β̇σ
µ
βγ̇ = 1

2δ
α̇
γ̇σ

µ

ββ̇
+ i(σµν)α̇γ̇σν ββ̇ , (B.1.10)

δα̇β̇σ
µ γ̇α = 1

2σ
µ α̇αδγ̇ β̇ − iσα̇αν (σµν)γ̇ β̇ , (B.1.11)

δα
β(σµν)γ

τ = 1
2

{
(σµν)α

τδγ
β + δα

τ (σµν)γ
β − igρκ

[
(σµκ)α

τ (σνρ)γ
β − (σνκ)α

τ (σµρ)γ
β
]}
, (B.1.12)

δα
β(σµν)β̇ α̇ = −1

4 i
[
σµαα̇σ

ν β̇β − σναα̇σµ β̇β + iǫµνρκσραα̇σ
β̇β
κ

]
, (B.1.13)

δα̇β̇(σ
µν)β

α = −1
4 i
[
σµ α̇ασν

ββ̇
− σν α̇ασµ

ββ̇
− iǫµνρκσα̇αρ σκββ̇

]
, (B.1.14)

δα̇β̇(σ
µν)γ̇ τ̇ =

1
2

{
(σµν)α̇τ̇δ

γ̇
β̇ + δα̇τ̇ (σ

µν)γ̇ β̇ − igρκ
[
(σµκ)α̇τ̇ (σ

νρ)γ̇ β̇ − (σνκ)α̇τ̇ (σ
µρ)γ̇ β̇

]}
, (B.1.15)

89Due to the self-duality relations of eq. (2.74), σµν and σµν are completely determined by the six matrices σ0i

and σ0i (i = 1, 2, 3). However, for convenience we keep all σµν and σµν matrices in the set Γ.
90It is often convenient to reverse the order of the spinors Z2 and Z3 on the right-hand side of eq. (B.1.4) by

using eqs. (2.58)–(2.60) and (2.93)–(2.94) to eliminate the factor of (−1)A [cf. eq. (2.66)].
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σµαα̇σ
ν
ββ̇

= 1
2

[
σµ
αβ̇
σνβα̇ + σν

αβ̇
σµβα̇ − gµνσλαβ̇σλβα̇ + iǫµνρκσραβ̇ σκ βα̇

]
, (B.1.16)

σµα̇ασνβ̇β = 1
2

[
σµα̇βσνβ̇α + σνα̇βσµβ̇α − gµνσλ α̇βσβ̇αλ − iǫµνρκσα̇βρ σβ̇ακ

]
, (B.1.17)

σµαα̇σ
νβ̇β = 1

2

[
gµνδα

βδβ̇ α̇ − 2i(σµν)α
βδβ̇ α̇ + 2iδα

β(σµν)β̇ α̇ − 4gρκ(σ
µκ)α

β(σνρ)β̇ α̇

]
,

(B.1.18)
(σµν)α

βσργα̇ = 1
2

[
σναα̇(σ

µρ)γ
β − σµαα̇(σνρ)γβ + iǫµνκλσκαα̇(σ

λρ)γ
β

−1
2 i
(
gµρσναα̇ − gνρσµαα̇ − iǫµνρκσκαα̇

)
δγ
β
]
, (B.1.19)

σρ α̇β(σµν)γ
α = 1

2

[
σν α̇α(σµρ)γ

β − σµ α̇α(σνρ)γβ + iǫµνκλσ
α̇α
κ (σλρ)γ

β

+1
2 i
(
gµρσν α̇α − gνρσµ α̇α − iǫµνρκσα̇ακ

)
δγ
β
]
, (B.1.20)

σρ
αβ̇

(σµν)γ̇ α̇ = 1
2

[
σναα̇(σ

µρ)γ̇ β̇ − σ
µ
αα̇(σ

νρ)γ̇ β̇ − iǫµνκλσκαα̇(σλρ)γ̇ β̇
+1

2 i
(
gµρσναα̇ − gνρσµαα̇ + iǫµνρκσκαα̇

)
δγ̇ β̇

]
, (B.1.21)

(σµν)α̇β̇σ
ρ γ̇α = 1

2

[
σν α̇α(σµρ)γ̇ β̇ − σµ α̇α(σνρ)γ̇ β̇ − iǫµνκλσα̇ακ (σλρ)γ̇ β̇

−1
2 i
(
gµρσν α̇α − gνρσµ α̇α + iǫµνρκσα̇ακ

)
δγ̇ β̇

]
, (B.1.22)

(σµν)α
β(σρκ)γ

τ = 1
2(σ

µν)α
τ (σρκ)γ

β + 1
8δα

τδγ
β (gµρgνκ − gµκgνρ − iǫµνρκ)

+1
4 iδα

τ (gµρσνκ + gνκσµρ − gνρσµκ − gµκσνρ)γ β

−1
4 iδγ

β (gµρσνκ + gνκσµρ − gνρσµκ − gµκσνρ)α τ

+1
4

[
(σµρ)α

τ (σνκ)γ
β + (σνκ)α

τ (σµρ)γ
β − (σνρ)α

τ (σµκ)γ
β − (σµκ)α

τ (σνρ)γ
β
]

+1
4gλσ

[
gµκ(σρσ)α

τ (σνλ)γ
β + gνρ(σκσ)α

τ (σµλ)γ
β

−gνκ(σρσ)ατ (σµλ)γβ − gµρ(σκσ)ατ (σνλ)γβ
]
, (B.1.23)

(σµν)α̇β̇(σ
ρκ)γ̇ τ̇ = 1

2(σ
µν)α̇τ̇ (σ

ρκ)γ̇ β̇ +
1
8δ
α̇
τ̇δ
γ̇
β̇ (g

µρgνκ − gµκgνρ + iǫµνρκ)

+1
4 iδ

α̇
τ̇ (g

µρσνκ + gνκσµρ − gνρσµκ − gµκσνρ)γ̇ β̇
−1

4 iδ
γ̇
β̇ (g

µρσνκ + gνκσµρ − gνρσµκ − gµκσνρ)α̇ τ̇
+1

4

[
(σµρ)α̇τ̇ (σ

νκ)γ̇ β̇ + (σνκ)α̇τ̇ (σ
µρ)γ̇ β̇ − (σνρ)α̇τ̇ (σ

µκ)γ̇ β̇ − (σµκ)α̇τ̇ (σ
νρ)γ̇ β̇

]

+1
4gλσ

[
gµκ(σρσ)α̇τ̇ (σ

νλ)γ̇ β̇ + gνρ(σκσ)α̇τ̇ (σ
µλ)γ̇ β̇

−gνκ(σρσ)α̇τ̇ (σµλ)γ̇ β̇ − gµρ(σκσ)α̇τ̇ (σνλ)γ̇ β̇
]
, (B.1.24)

(σµν)α
β(σρκ)β̇ α̇ = 1

8

[
(gµρgνκ − gµκgνρ)σλαα̇σβ̇βλ

+iǫµνρλσλαα̇σ
κ β̇β − iǫµνκλσλαα̇σρ β̇β − iǫµρκλσναα̇σβ̇βλ + iǫνρκλσµαα̇σ

β̇β
λ

−gµρ(σκαα̇σν β̇β + σναα̇σ
κ β̇β) + gνρ(σκαα̇σ

µ β̇β + σµαα̇σ
κ β̇β)

+gµκ(σραα̇σ
ν β̇β + σναα̇σ

ρ β̇β)− gνκ(σραα̇σµ β̇β + σµαα̇σ
ρ β̇β)

]
. (B.1.25)
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From eqs. (B.1.5)–(B.1.25), one immediately obtains the corresponding 21 Fierz identities rep-

resented by eq. (B.1.4). Eleven of these identities also appear in Appendix B of ref. [77].91

The derivation of the 21 identities listed above is straightforward. Eqs. (B.1.5)–(B.1.7) are

equivalent to the completeness relation of eq. (B.1.1). The next eight identities [eqs. (B.1.8)–

(B.1.15)] are easily derived starting from eqs. (B.1.5)–(B.1.7). As a simple example, using the

results of eqs. (B.1.6) and (B.2.20), it follows that

δα
βσµγα̇ = δα

βδγ
τσµτα̇ = 1

2

[
δα
τδγ

β + (σρκ)α
τ (σρκ)γ

β
]
σµτα̇

= 1
2

[
σµαα̇δγ

β
+ (σρκσµ)αα̇(σρκ)γ

β
]

= 1
2

[
σµαα̇δγ

β
+ 1

2 i(g
κµσρ − gρµσκ + iǫρκµνσν)αα̇(σρκ)γ

β
]

= 1
2δα

γσµ β̇β + i(σµν)α
γσβ̇βν , (B.1.26)

where eq. (2.74) was employed in the final step. We can now use eqs. (B.1.8)–(B.1.11) to derive

eqs. (B.1.16)–(B.1.22) by a similar technique. Finally, starting from eqs. (B.1.12)–(B.1.15) we

may employ the same technique once more to derive eqs. (B.1.23)–(B.1.25).92 A useful check of

the last three identities can be carried out by multiplying these results by gµρgνκ and summing

over the two repeated Lorentz index pairs. We then find:

(σµν)α
β(σµν)γ

τ = −1
2(σ

µν)α
τ (σµν)γ

β + 3
2δα

τδγ
β , (B.1.27)

(σµν)α̇β̇(σµν)
γ̇
τ̇ = −1

2(σ
µν)α̇τ̇ (σµν)

γ̇
β̇ +

3
2δ
α̇
τ̇δ
γ̇
β̇ , (B.1.28)

(σµν)α
β(σµν)

γ̇
τ̇ = 0 . (B.1.29)

Eq. (B.1.29) has already been recorded in eq. (2.82). To verify eqs. (B.1.27) and (B.1.28), we

first rewrite these equations with the interchange of β ↔ τ and β̇ ↔ τ̇ . Inserting the resulting

equations back into eqs. (B.1.27) and (B.1.28) then yields the previously obtained eqs. (2.80)

and (2.81) [or equivalently, eqs. (B.1.6) and (B.1.7)].

A similar check can be performed on eqs. (B.1.16)–(B.1.18) by multiplying these results by

gµν and summing over the repeated Lorentz index pair [with assistance from eq. (B.1.29)]:

σµαα̇σµββ̇ = −σµ
αβ̇
σµβα̇ , (B.1.30)

σµ α̇ασβ̇βµ = −σµ α̇βσβ̇αµ , (B.1.31)

σµαα̇σ
β̇β
µ = 2 δα

βδβ̇ α̇ . (B.1.32)

It follows that:

σµαα̇σµββ̇ = 2 ǫαβǫα̇β̇ , (B.1.33)

σµ α̇ασβ̇βµ = 2 ǫαβǫα̇β̇ , (B.1.34)

91Note that in ref. [77], ǫµνρκ has the opposite sign with respect to our conventions, and σµν is defined without
an overall factor of i. Taking these differences into account, we have confirmed that the results of Appendix B of
ref. [77] match the corresponding results obtained here.

92In particular, the identities given in eqs. (B.2.18) and (B.2.19) are especially useful in the evaluation of
eqs. (B.1.19)–(B.1.24).
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since eqs. (B.1.30) and (B.1.31) are antisymmetric under the separate interchanges of α↔ β and

α̇↔ β̇. The coefficients in eqs. (B.1.33) and (B.1.34) are determined by substituting α = α̇ = 1

and β = β̇ = 2. Thus, we have confirmed the results previously obtained in eqs. (2.47)–(2.49).

Eqs. (B.1.5)–(B.1.7) can also be used to derive four additional identities, which yield Fierz

identities of a different form. Simply multiply each of these equations by two ǫ symbols (with

appropriately chosen undotted and/or dotted spinor indices), and use eqs. (2.30) and (2.77).

Two of the resulting identities coincide with eqs. (B.1.33) and (B.1.34), while the other two are:

ǫαβǫ
γτ = −1

2

[
δα
γδβ

τ − (σµν)α
γ(σµν)β

τ
]
, (B.1.35)

ǫα̇β̇ǫγ̇τ̇ = −1
2

[
δα̇γ̇δ

β̇
τ̇ − (σµν)α̇γ̇(σµν)

β̇
τ̇

]
. (B.1.36)

One can check that eqs. (B.1.35) and (B.1.36) are equivalent to the previously obtained eqs. (2.80)

and (2.81). Multiplying eqs. (B.1.33)–(B.1.36) by four (commuting or anticommuting) two-

component spinors Z1AZ2BZ3CZ4D yields the corresponding Fierz identities of the form:

(Z1Γ
(k)IZ2)(Z3Γ

(n)JZ4) = (−1)A
∑

p,q,K,L

(Cknpq )
IJ
KL(Z1Γ

(p)KZ3)(Z2Γ
(q)LZ4) , (B.1.37)

which differs from eq. (B.1.4) in the ordering of the spinors on the right-hand side.

Finally, we note that the Schouten identities,

ǫαβǫγδ + ǫαγǫδβ + ǫαδǫβγ = 0 , ǫα̇β̇ǫγ̇δ̇ + ǫα̇γ̇ǫδ̇β̇ + ǫα̇δ̇ǫβ̇γ̇ = 0 , (B.1.38)

are the basis for Fierz identities given by eqs. (2.64) and (2.65), which do not assume the simple

forms of either eqs. (B.1.4) or (B.1.37).

B.2 Sigma matrix identities in d 6= 4 dimensions

When considering a theory regularized by dimensional continuation [124], one must be careful in

treating cases with contracted spacetime vector indices µ, ν, κ, ρ, . . .. Instead of taking on four

possible values, these vector indices formally run over d values, where d is infinitesimally different

from 4. This means that some identities that would hold in unregularized four-dimensional

theories are inconsistent and must not be used; other identities remain valid if d replaces 4 in

the appropriate spots; and still other identities hold without modification.

Two important identities that do hold in d 6= 4 dimensions are:

[σµσν + σνσµ]α
β = 2gµνδα

β , (B.2.1)

[σµσν + σνσµ]α̇β̇ = 2gµνδα̇β̇ . (B.2.2)

Equivalently,

(σµσν)α
β = gµνδα

β − 2i(σµν)α
β , (B.2.3)

(σµσν)α̇β̇ = gµνδα̇β̇ − 2i(σµν)α̇β̇ , (B.2.4)
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where σµν and σµν are defined in eq. (A.10). The trace identities,

Tr[σµσν ] = Tr[σµσν ] = 2gµν , (B.2.5)

Trσµν = Trσµν = 0 , (B.2.6)

then follow. We also note that the spinor index trace identity,

Tr[1] = δαα = δα̇α̇ = 2 , (B.2.7)

continues to hold in dimensional continuation regularization methods. In contrast, the Fierz

identities of Appendix B.1 do not have a consistent, unambiguous meaning outside of four

dimensions [249–252]. However, the following identities that are implied by eq. (B.1.5) do

consistently generalize to d 6= 4 spacetime dimensions:

[σµσµ]α
β = dδβα , (B.2.8)

[σµσµ]
α̇
β̇ = dδα̇

β̇
. (B.2.9)

Using eqs. (B.2.8) and (B.2.9) along with the repeated use of eqs. (B.2.1) and (B.2.2) then yields:

[σµσνσµ]αβ̇ = −(d− 2)σν
αβ̇
, (B.2.10)

[σµσνσµ]
α̇β = −(d− 2)σα̇βν , (B.2.11)

[σµσνσρσµ]α
β = 4gνρδβα − (4− d)[σνσρ]αβ , (B.2.12)

[σµσνσρσµ]
α̇
β̇ = 4gνρδα̇

β̇
− (4− d)[σνσρ]α̇β̇ , (B.2.13)

[σµσνσρσκσµ]αβ̇ = −2[σκσρσν ]αβ̇ + (4− d)[σνσρσκ]αβ̇ , (B.2.14)

[σµσνσρσκσµ]
α̇β = −2[σκσρσν ]α̇β + (4− d)[σνσρσκ]α̇β . (B.2.15)

Identities that involve the (explicitly and inextricably four-dimensional) ǫµνρκ symbol

σµσνσρ = gµνσρ − gµρσν + gνρσµ − iǫµνρκσκ , (B.2.16)

σµσνσρ = gµνσρ − gµρσν + gνρσµ + iǫµνρκσκ , (B.2.17)

ǫµνκλσ
λρ = −i (gκρσµν − gνρσµκ + gµρσνκ) , (B.2.18)

ǫµνκλσ
λρ = i (gκρσµν − gνρσµκ + gµρσνκ) , (B.2.19)

σµνσρ = 1
2 i (g

νρσµ − gµρσν + iǫµνρκσκ) , (B.2.20)

σµνσρ = 1
2 i (g

νρσµ − gµρσν − iǫµνρκσκ) , (B.2.21)

σµσνρ = 1
2 i (g

µνσρ − gµρσν − iǫµνρκσκ) , (B.2.22)

σµσνρ = 1
2 i (g

µνσρ − gµρσν + iǫµνρκσκ) , (B.2.23)

σµνσρκ = −1
4(g

νρgµκ − gµρgνκ + iǫµνρκ) + 1
2 i(g

νρσµκ + gµκσνρ − gµρσνκ − gνκσµρ) , (B.2.24)

σµνσρκ = −1
4(g

νρgµκ − gµρgνκ − iǫµνρκ) + 1
2 i(g

νρσµκ + gµκσνρ − gµρσνκ − gνκσµρ) , (B.2.25)

165



are also only meaningful in exactly four dimensions. This applies as well to the trace identities

which follow from them.93 For example,

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ + iǫµνρκ) , (B.2.26)

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ − iǫµνρκ) . (B.2.27)

This could lead to ambiguities in loop computations where it is necessary to perform the com-

putation in d 6= 4 dimensions (until the end of the calculation where the limit d→ 4 is taken).

However, in practice one typically finds that the above expressions appear multiplied by the

metric and/or other external tensors (such as four-momenta appropriate to the problem at

hand). In almost all such cases, two of the indices appearing in eqs. (B.2.26) and (B.2.27) are

symmetrized which eliminates the ǫµνρκ term, rendering the resulting expressions unambiguous.

Similarly, the sum of the above trace identities can be assigned an unambiguous meaning in

d 6= 4 dimensions:

Tr[σµσνσρσκ] + Tr[σµσνσρσκ] = 4 (gµνgρκ − gµρgνκ + gµκgνρ) . (B.2.28)

One can recursively derive trace formulae for products of six or more σ/σ matrices by using the

results of eqs. (B.2.16) and (B.2.17) to reduce the number of σ/σ matrices by two. For example,

Tr[σµσνσρσκσλσδ] = gµνTr[σρσκσλσδ]− gµρTr[σνσκσλσδ] + gνρTr[σµσκσλσδ]

+iǫµνρǫTr[σǫσ
κσλσδ] , (B.2.29)

Tr[σµσνσρσκσλσδ] = gµνTr[σρσκσλσδ]− gµρTr[σνσκσλσδ] + gνρTr[σµσκσλσδ]

−iǫµνρǫTr[σǫσκσλσδ] . (B.2.30)

We then use eqs. (B.2.26) and (B.2.27) to evaluate the remaining traces over four σ/σ matrices.

Appendix C: Explicit forms for the two-component spinor wave

functions

In this Appendix, we construct the explicit forms for the eigenstates of the spin operator 1
2~σ ·ŝ,

and examine their properties. For massive fermions, it is possible to transform to the rest frame,

and quantize the spin along a fixed axis in space. The corresponding spinor wave functions will

be called fixed-axis spinors. For either massive or massive fermions, one can quantize the spin

along the direction of momentum. The corresponding spinor wave functions are helicity spinors.

93This is analogous to the statement that Tr (γ5γ
µγνγργκ) = −4iǫµνρκ [in our convention where ǫ0123 = +1, and

γ5 is defined by eq. (G.1.2)] is only meaningful in d = 4 dimensions. In two-component notation, the equivalent
result is Tr[σµσνσρσκ − σµσνσρσκ] = 4iǫµνρκ. In the literature various schemes have been proposed for defining
the properties of γ5 in d 6= 4 dimensions [231, 252]. In two-component notation, this would translate into a
procedure for dealing with general traces involving four or more σ/σ matrices.
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Helicity spinor wave functions are most conveniently applied to massless fermions or fermions

in the relativistic limit of high energy E ≫ m. Fixed-axis spinors are most conveniently applied

to massive fermions in the non-relativistic limit.

C.1 Fixed-axis spinor wave functions

Consider a spin-1/2 fermion in its rest frame and quantize the spin along a fixed axis specified

by the unit vector

ŝ ≡ (sin θ cosφ , sin θ sinφ , cos θ) , (C.1.1)

with polar angle θ and azimuthal angle φ with respect to a fixed z-axis. The relevant basis of

two-component fixed-axis spinors χs are eigenstates of 1
2~σ ·ŝ, i.e.,

1
2~σ ·ŝχs = sχs , s = ±1

2 . (C.1.2)

In order to construct the eigenstates of 1
2~σ ·ŝ, we first consider the case where ŝ = ẑ. In

this case, we define the eigenstates of 1
2σ

3 to be:

χ1/2(ẑ) =


1

0


 , χ−1/2(ẑ) =


0

1


 . (C.1.3)

By convention, we have set an arbitrary overall multiplicative phase factor for each spinor of

eq. (C.1.3) to unity. We then determine χs(ŝ) from χs(ẑ) by employing the spin-1/2 rotation

operator that corresponds to a rotation from ẑ to ŝ. This rotation is represented by a 3×3 matrix

R such that ŝ = Rẑ. However, this rotation operator is not unique. In its most general form,

the rotation operator can be parameterized in terms of three Euler angles (e.g., see refs. [44,45]):

R(φ , θ , γ) ≡ R(ẑ , φ)R(ŷ , θ)R(ẑ , γ) , (C.1.4)

The Euler angles can be chosen to lie in the range 0 ≤ θ ≤ π and 0 ≤ φ , γ < 2π. Here, R(n̂ , θ)

is a 3× 3 orthogonal matrix that represents a rotation by an angle θ about a fixed axis n̂,

Rij(n̂ , θ) = exp(−iθn̂· ~S) = ninj + (δij − ninj) cos θ − ǫijknk sin θ , (C.1.5)

where the ~S = (S1 , S2 , S3) are three 3 × 3 matrices whose matrix elements are given by

(Si)jk = −iǫijk [cf. eq. (2.9)].

However, the angle γ is arbitrary, since R(ẑ , γ)ẑ = ẑ. Thus,

ŝ = Rẑ = (sin θ cosφ , sin θ sinφ , cos θ) , (C.1.6)

independently of the choice of γ. For θ = 0 or θ = π, where ŝ is parallel to the z-axis, the

azimuthal angle φ is undefined. Since ŝ → −ŝ corresponds in general to θ → π − θ and

φ→ φ+ π (mod 2π), we shall adopt a convention whereby:

φ =

{
0 , for ŝ = ẑ , (θ = 0) ,

π , for ŝ = −ẑ , (θ = π) .
(C.1.7)

167



Using the spin-1/2 rotation operator corresponding to R(φ , θ , γ), one can compute χs(ŝ),

χs(ŝ) = D(φ , θ , γ)χs(ẑ) , (C.1.8)

where D is the spin-1/2 unitary representation matrix [253]

D(φ , θ , γ) ≡ D(ẑ, φ)D(ŷ, θ)D(ẑ, γ) , (C.1.9)

and D is the 2× 2 unitary matrix

D(n̂, θ) ≡ exp (−iθn̂·~σ/2) = cos
θ

2
− in̂·~σ sin

θ

2
. (C.1.10)

Eq. (C.1.8) yields explicit forms for the eigenstates of 1
2~σ ·ŝ:

χ1/2(ŝ) =



e−i(φ+γ)/2 cos

θ

2

ei(φ−γ)/2 sin
θ

2


 , χ−1/2(ŝ) =



−e−i(φ−γ)/2 sin θ

2

ei(φ+γ)/2 cos
θ

2


 . (C.1.11)

The well-known two-to-one mapping between SU(2) and SO(3) implies that for a given

rotation matrix R there are two corresponding spin-1/2 rotation matrices D. In particular,

D(φ+ 2π , θ , γ) = −D(φ , θ , γ) , (C.1.12)

which implies that a rotation of a spinor by 2π yields an overall change of sign in the spinor

wave function (an effect that can be observed in quantum interference experiments!). Strictly

speaking, we should take the range of the Euler angles to be 0 ≤ φ < 4π, 0 ≤ θ ≤ π and

0 ≤ γ < 2π. However, when constructing the spinor wave function of a spin-1/2 particle whose

spin quantization axis is given by eq. (C.1.6), we will fix the overall sign of the spinor wave

function by convention.

More generally, the overall phase of the spinor wave function is unphysical. Noting that

D(ẑ, γ)χs(ẑ) = e−isγχs(ẑ), the choice of γ is also a matter of convention. First, we will require

that when ŝ = ẑ, eq. (C.1.8) should reproduce the spinor wave functions given in eq. (C.1.3).

This implies that:

γ = 0 , for ŝ = ẑ , (θ = φ = 0) . (C.1.13)

For ŝ = −ẑ, we use eq. (C.1.7) to obtain:

χs(−ẑ) = ie−isγ(−ẑ) χ−s(ẑ) , s = ±1
2 , (C.1.14)

where the notation γ(−ẑ) has been employed to allow the possibility that the convention for γ

depends on the direction indicated by its argument.

Two different conventions are commonly employed in the literature. In the first convention,

one chooses γ = −φ. This choice has the good feature that R(φ , 0 , −φ) = 13×3, independently

168



of the angle φ, which is undefined when θ = 0.94 Moreover, the rotation matrix R(φ , θ , −φ)
and the corresponding spin-1/2 rotation matrix D(φ , θ , −φ) can be expressed simply as a

single rotation by an angle θ about a fixed axis that points along a unit vector in the azimuthal

direction:

ϕ̂ ≡ (− sinφ , cosφ , 0) , (C.1.15)

In particular,

R(ϕ̂ , θ) = R(ẑ , φ)R(ŷ , θ)R(ẑ , −φ) , (C.1.16)

D(ϕ̂ , θ) = D(φ , θ , −φ) . (C.1.17)

Hence, in this convention χs(ŝ) = D(ϕ̂ , θ)χs(ẑ), which is the most common choice for the

spinor wave function [36,254,255].

In the second convention, one chooses γ = 0. One motivation for this choice is that the

corresponding rotation matrix is somewhat simpler:

R(φ , θ , 0) = R(ẑ , φ)R(ŷ , θ) =




cos θ cosφ − sinφ sin θ cosφ

cos θ sinφ cosφ sin θ sinφ

− sin θ 0 cos θ



. (C.1.18)

Employing the corresponding spin-1/2 rotation operator D(φ , θ , 0) in eq. (C.1.8) yields a

slightly more symmetrical form for the spinor wave function [256].

Explicit forms for the spinor wave functions in the two conventions are obtained from

eq. (C.1.11) by taking γ(ŝ) = −φ and γ(ŝ) = 0, respectively. For example, eq. (C.1.14) reduces

to:

χs(−ẑ) =




−2sχ−s(ẑ) for γ(−ẑ) = −φ = −π ,

iχ−s(ẑ) for γ(−ẑ) = 0 ,
s = ±1

2 , (C.1.19)

in the convention specified by eq. (C.1.7).

Many of the properties of the spinor wave functions are independent of the choice of the

Euler angle γ. The spinor wave functions χs defined by eq. (C.1.8) are normalized such that

χ†
s(ŝ)χs′(ŝ) = δss′ , (C.1.20)

and satisfy the following completeness relation:

∑

s

χs(ŝ)χ
†
s
(ŝ) =


 1 0

0 1


 . (C.1.21)

94However, R(φ , π , −φ) 6= 13×3 even though φ is also undefined when θ = π.
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The spinor wave functions χs(ŝ) and χ−s(ŝ) are connected by the following relation:

χ−s(ŝ) = −2siσ2 χ∗
s
(ŝ) . (C.1.22)

Consider a spin-1/2 fermion with four-momentum pµ = (E , ~p), with E = (|~p|2 +m2)1/2,

and the direction of ~p given by

p̂ = (sin θp cosφp , sin θp sinφp , cos θp) . (C.1.23)

Using eqs. (2.106) and (2.107), one can employ eqs. (3.1.19)–(3.1.22) to obtain explicit expres-

sions for the two-component spinor wave functions x(~p, s), y(~p, s), x†(~p, s) and y†(~p, s).

Additional properties of the χs can be derived by introducing an orthonormal set of unit

three-vectors ŝa that provide a basis for a right-handed coordinate system. Explicitly,

ŝa ·ŝb = δab , (C.1.24)

ŝa × ŝb = ǫabcŝc . (C.1.25)

We shall identify

ŝ3 ≡ ŝ (C.1.26)

as the quantization axis used in defining the third component of the spin of the fermion in its

rest frame. The unit vectors ŝ1 and ŝ2 are then chosen such that eqs. (C.1.24) and (C.1.25)

are satisfied. To explicitly construct the ŝa, we begin with the orthonormal set {x̂ , ŷ , ẑ}, and
employ the same rotation operator R used to define χs(ŝ). That is,

(ŝ1 , ŝ2 , ŝ3) = (Rx̂ , Rŷ , Rẑ) , where R ≡ R(φ , θ , γ) , (C.1.27)

and φ, θ and γ are the Euler angles used to define the spinor wave function in eq. (C.1.8).

From eq. (C.1.27), one can immediately derive the completeness relation (as a consequence of

RRT = 1),

ŝaiŝaj = δij , (C.1.28)

where i and j label the space components of the three-vector ŝa.

We can use the ŝa to extend the defining equation of χs [eq. (C.1.2)]:

1
2 ~σ ·ŝaχs′(ŝ) =

1
2τ

a
ss′χs(ŝ) , (C.1.29)

where the τass′ are the matrix elements of the Pauli matrices.95 That is, 1
2~σ ·(s1 ± is2) serve as

ladder operators that connect the spinor wave functions χ1/2 and χ−1/2. Using eq. (C.1.20), it

follows that eq. (C.1.29) is equivalent to:

χ†
s(ŝ)~σ ·ŝaχs′(ŝ) = τass′ . (C.1.30)

95We use the symbol τ rather than σ to emphasize that the indices of the Pauli matrices τa are spin labels s, s′

and not spinor indices α, α̇. The first (second) row and column of the τ -matrices correspond to s = 1/2 (−1/2).
For example, τ 3ss′ = 2sδss′ (no sum over s).
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It is instructive to prove eq. (C.1.30) directly. Employing eq. (C.1.8) and using the fact

that D is a unitary matrix,

χ†
s(ŝ)~σ ·ŝaχs′(ŝ) = χ†

s(ẑ) [D(φ , θ , γ)]−1~σ ·ŝaD(φ , θ , γ)χs′(ẑ) . (C.1.31)

The above result can be simplified by a repeated use of the following identity,

eiθn̂·~σ/2 σj e−iθn̂·~σ/2 = Rjk(n̂ , θ)σk , (C.1.32)

which is valid for any fixed axis n̂, where R(n̂ , θ) is the rotation matrix defined in eq. (C.1.5).

It follows that

[D(φ , θ , γ)]−1 σj D(φ , θ , γ) = Rjk(φ , θ , γ)σk , (C.1.33)

where R(φ , θ , γ) is defined in eq. (C.1.4). Since RT = R−1,

χ†
s(ŝ)~σ ·ŝaχs′(ŝ) = χ†

s(ẑ)~σ ·
[
R−1ŝa

]
χs′(ẑ) . (C.1.34)

Eq. (C.1.27) implies that (R−1ŝ1 , R−1ŝ2 , R−1ŝ3) = (x̂ , ŷ , ẑ), and it follows that

~σ ·
[
R−1ŝa

]
= σa . (C.1.35)

Consequently, we end up with

χ†
s(ŝ)~σ ·ŝaχs′(ŝ) = χ†

s(ẑ)σ
aχs′(ẑ) ≡ τass′ , (C.1.36)

which defines the matrix elements of the Pauli matrices, and our proof of eq. (C.1.30) is complete.

Using the completeness relation given by eq. (C.1.28), we can rewrite eq. (C.1.30) as

χ†
s(ŝ)σ

iχs′(ŝ) = τass′ ŝ
ai . (C.1.37)

Taking the hermitian conjugate of eq. (C.1.37) is equivalent to interchanging s ↔ s′, since the

σi are hermitian matrices and (τass′)
∗ = τas′s. To evaluate expressions similar to eq. (C.1.37) that

contain products of σ-matrices, it is sufficient to use the relation σiσj = δij1+ iǫijkσk as many

times as needed to reduce the final expression to terms containing at most one σ-matrix. For

example, using eqs. (C.1.20) and (C.1.37), it follows that

χ†
s(ŝ)σ

iσjχs′(ŝ) = δss′δ
ij + iǫijkτass′ ŝ

ak . (C.1.38)

It is sometimes useful to have a more explicit representation of the ŝa. In the convention

where γ = −φ, eq. (C.1.27) yields:

ŝ1 = (1− 2 cos2 φ sin2
θ

2
, − sin 2φ sin2

θ

2
, − sin θ cosφ) ,

ŝ2 = (− sin 2φ sin2
θ

2
, 1− 2 sin2 φ sin2

θ

2
, − sin θ sinφ) ,

ŝ3 = (sin θ cosφ , sin θ sinφ , cos θ) . (C.1.39)
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The explicit forms for the ŝa are somewhat simpler in the convention where γ = 0. In this case,

eqs. (C.1.18) and (C.1.27) yield:

ŝ1 = (cos θ cosφ, cos θ sinφ, − sin θ) ,

ŝ2 = (− sinφ, cosφ, 0) ,

ŝ3 = (sin θ cosφ, sin θ sinφ, cos θ) . (C.1.40)

C.2 Fixed-axis spinors in the non-relativistic limit

Consider an on-shell massive fermion of three-momentum ~p, massm and spin quantum number s,

where s = ±1
2 are the possible projections of the spin vector (in units of ~) along the fixed ŝ

direction [cf. eq. (C.1.2)]. The spinor wave functions, x, y, and their hermitian conjugates are

given by eqs. (3.1.19)–(3.1.22). In the non-relativistic limit,

√
p · σ ≃

√
m

(
1− ~σ ·~p

2m

)
,

√
p · σ ≃

√
m

(
1+

~σ ·~p

2m

)
, (C.2.1)

where we keep terms only up to O(|~p|/m). Inserting the above results into eqs. (3.1.19)–(3.1.22)

yields:

xα(~p, s) ≃
√
m

(
1− ~σ ·~p

2m

)
χs(ŝ) , (C.2.2)

xα(~p, s) ≃ −2s
√
mχ†

−s(ŝ)

(
1+

~σ ·~p

2m

)
, (C.2.3)

yα(~p, s) ≃ 2s
√
m

(
1− ~σ ·~p

2m

)
χ−s(ŝ) , (C.2.4)

yα(~p, s) ≃
√
mχ†

s(ŝ)

(
1+

~σ ·~p

2m

)
, (C.2.5)

for the undotted spinor wave functions and

x†α̇(~p, s) ≃ −2s
√
m

(
1+

~σ ·~p

2m

)
χ−s(ŝ) , (C.2.6)

x†α̇(~p, s) ≃
√
mχ†

s(ŝ)

(
1− ~σ ·~p

2m

)
, (C.2.7)

y†α̇(~p, s) ≃
√
m

(
1+

~σ ·~p

2m

)
χs(ŝ) , (C.2.8)

y†α̇(~p, s) ≃ 2s
√
mχ†

−s(ŝ)

(
1− ~σ ·~p

2m

)
, (C.2.9)

for the dotted spinor wave functions.

In the computation of the S-matrix amplitudes for scattering and decay processes, one

typically must evaluate a bilinear product of spinors, i.e. quantities of the form

z1(~p1, s1) Γ z2(~p2, s2) , (C.2.10)
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where z1 and z2 represent one of the two-component spinor wave functions x, y, x† or y†, and Γ

is a 2×2 matrix (in spinor space) that is either the identity matrix, or is made up of alternating

products of σ and σ. In the non-relativistic limit, these bilinears take on rather simple forms.

In what follows, we work to first order in |~pi|/mi. For example,

yα(~p1, s1)xα(~p2, s2) ≃
√
m1m2 χ

†
s1(ŝ)

(
1+

~σ ·~p

2m1
− ~σ ·~p

2m2

)
χs2(ŝ)

≃ √m1m2

[
δs1,s2 +

(
~p1

2m1
− ~p2

2m2

)
·ŝaτas1,s2

]
, (C.2.11)

where we have used the results of eqs. (C.1.20) and (C.1.37). Similarly,

yα(p1, s1)σ
µ

αβ̇
y†β̇(p2, s2) ≃

√
m1m2 χ

†
s1(ŝ)

[
σµ +

~σ ·~p1

2m1
σµ + σµ

~σ ·~p2

2m2

]
χs2(ŝ)

≃ √m1m2 Z
µ
s1,s2(~p1, ~p2) , (C.2.12)

where96

Zµss′(~p1, ~p2) ≡





δss′ +

(
~p1

2m1
+

~p2

2m2

)
·ŝaτass′ , for µ = 0 ,

ŝaiτass′ +

(
pi1
2m1

+
pi2
2m2

)
δss′ +

(
pj2
2m2

− pj1
2m1

)
iǫijkŝakτass′ , for µ = i = 1, 2, 3 ,

(C.2.13)

is obtained after using the results of eqs. (C.1.37) and (C.1.38).

In summary, we list the non-relativistic forms of the spinor bilinears. Referring to eq. (C.2.10),

if Γ = 1, then

xα(~p1, s1)xα(~p2, s2) ≃ 2s2
√
m1m2

[
δ−s2,s1 +

(
~p1

2m1
− ~p2

2m2

)
·ŝaτa−s2,s1

]
, (C.2.14)

yα(~p1, s1)yα(~p2, s2) ≃ 2s2
√
m1m2

[
δs1,−s2 +

(
~p1

2m1
− ~p2

2m2

)
·ŝaτas1,−s2

]
, (C.2.15)

xα(~p1, s1)yα(~p2, s2) ≃
√
m1m2

[
−δs2,s1 +

(
~p1

2m1
− ~p2

2m2

)
·ŝaτas2,s1

]
, (C.2.16)

yα(~p1, s1)xα(~p2, s2) ≃
√
m1m2

[
δs1,s2 +

(
~p1

2m1
− ~p2

2m2

)
·ŝaτas1,s2

]
, (C.2.17)

where we have used

τas′s = −4ss′τa−s,−s′ , s, s′ = ±1
2 , (C.2.18)

to arrive at the final forms given in eqs. (C.2.14) and (C.2.16). However, in using the above

results, one must now pay close attention to the ordering of the subscript indices of the τa. The

corresponding formulae for dotted spinor wave function bilinears are obtained by taking the

96We also define Zµs′s(~p2, ~p1) as the expression given by eq. (C.2.13) with the interchange of {s , ~p1 , m1} and
{s′ , ~p2 , m2} .
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hermitian conjugates of eqs. (C.2.14)–(C.2.17), which complex-conjugates the τa that appear on

the right-hand side of these equations. Since (τass′)
∗ = τas′s, we obtain

x†α̇(~p1, s1)x
†α̇(~p2, s2) ≃ 2s1

√
m1m2

[
δs2,−s1 −

(
~p1

2m1
− ~p2

2m2

)
·ŝaτas2,−s1

]
, (C.2.19)

y†α̇(~p1, s1)y
†α̇(~p2, s2) ≃ 2s1

√
m1m2

[
δ−s1,s2 −

(
~p1

2m1
− ~p2

2m2

)
·ŝaτa−s1,s2

]
, (C.2.20)

y†α̇(~p1, s1)x
†α̇(~p2, s2) ≃ −

√
m1m2

[
δs2,s1 +

(
~p1

2m1
− ~p2

2m2

)
·ŝaτas2,s1

]
, (C.2.21)

x†α̇(~p1, s1)y
†α̇(~p2, s2) ≃

√
m1m2

[
δs1,s2 −

(
~p1

2m1
− ~p2

2m2

)
·ŝaτas1,s2

]
. (C.2.22)

Likewise, if Γ = σµ, then

xα(p1, s1)σ
µ

αβ̇
x†β̇(p2, s2) ≃ 4s1s2

√
m1m2 Z

µ
−s1,−s2(~p1, ~p2) , (C.2.23)

yα(p1, s1)σ
µ

αβ̇
y†β̇(p2, s2) ≃

√
m1m2 Z

µ
s1,s2(~p1, ~p2) , (C.2.24)

xα(p1, s1)σ
µ

αβ̇
y†β̇(p2, s2) ≃ −2s1

√
m1m2 Z

µ
−s1,s2(~p1, ~p2) , (C.2.25)

yα(p1, s1)σ
µ

αβ̇
x†β̇(p2, s2) ≃ −2s2

√
m1m2 Z

µ
s1,−s2(~p1, ~p2) , (C.2.26)

where Zµss′(~p1, ~p2) is defined in eq. (C.2.13). If Γ = σµ, one can use z1σ
µz†2 = z†2σ

µz1 [i.e. eq. (2.60)

for commuting spinors] to obtain the corresponding formulae for the spinor wave function bilin-

ears (cf. footnote 96):

x†α̇(p1, s1)σ
µα̇βxβp2, s2) ≃ 4s1s2

√
m1m2 Z

µ
−s2,−s1(~p2, ~p1) , (C.2.27)

y†α̇(p1, s1)σ
µα̇βyβ(p2, s2) ≃

√
m1m2 Z

µ
s2,s1(~p2, ~p1) , (C.2.28)

y†α̇(p1, s1)σ
µα̇βxβ(p2, s2) ≃ −2s2

√
m1m2 Z

µ
−s2,s1(~p2, ~p1) , (C.2.29)

x†α̇(p1, s1)σ
µα̇βyβ(p2, s2) ≃ −2s1

√
m1m2 Z

µ
s2,−s1(~p2, ~p1) . (C.2.30)

These results can also be derived directly from eqs. (C.2.2)–(C.2.9), after employing eq. (C.2.18).

It is straightforward to evaluate the spinor wave function bilinears when Γ is a product of

two or more σ/σ matrices. As the corresponding expressions are considerably more complicated,

we shall not write them out explicitly here.

C.3 Helicity spinor wave functions

All the results of Appendix C.1 apply to the helicity spinors χλ, which are defined to be eigen-

states of 1
2~σ ·p̂, i.e.,

1
2~σ ·p̂χλ(p̂) = λχλ(p̂) , λ = ±1

2 , (C.3.1)
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where p̂ = (sin θp cosφp , sin θp sinφp , cos θp). It follows that:

√
p·σ χλ(p̂) = ω−λ(~p)χλ(p̂) ,

√
p·σ χλ(p̂) = ωλ(~p)χλ(p̂) , (C.3.2)

where

ωλ(~p) ≡ (E + 2λ|~p| )1/2 , E =
√
|~p|2 +m2 . (C.3.3)

As a result, the explicit forms for the two-component helicity spinor wave functions [cf. eqs. (3.1.19)–

(3.1.22)] simplify:

xα(~p, λ) = ω−λ χλ(p̂) , xα(~p, λ) = −2λω−λ χ
†
−λ(p̂) , (C.3.4)

yα(~p, λ) = 2λωλ χ−λ(p̂) , yα(~p, λ) = ωλ χ
†
λ(p̂) , (C.3.5)

x†α̇(~p, λ) = −2λω−λ χ−λ(p̂) , x†α̇(~p, λ) = ω−λ χ
†
λ(p̂) , (C.3.6)

y†α̇(~p, λ) = ωλ χλ(p̂) , y†α̇(~p, λ) = 2λωλ χ
†
−λ(p̂) , (C.3.7)

where ω±λ = ω±λ(~p).

In analogy with the ŝa, it is convenient to introduce an orthonormal set of unit three-vectors

p̂a such that p̂3 = p̂. Then, eqs. (C.1.24)–(C.1.30) apply as well to the two-component helicity

spinors after taking ŝa = p̂a.

In scattering processes, it is often convenient to work in the rest frame of the incoming

particles, in which the corresponding incoming fermion three-momenta are denoted by ~p and

−~p, respectively. The helicity spinor wave function of the second fermion depends on the

definition of χλ(−p̂). In this review, we follow a convention97 in which χλ(−p̂) is defined to be

the spinor wave function obtained from χλ(ẑ) via a rotation by a polar angle π − θp and an

azimuthal angle φp + π with respect to the ẑ-direction. Then,

χλ(−p̂) = D(φp + π , π − θp , γ(−p̂))χλ(ẑ) , (C.3.8)

where we have exhibited the possible dependence of γ on the direction −p̂. Using the properties

of the spin-1/2 rotation matrices, one can derive

D(φp + π , π − θp , γ(−p̂)) = −D(φp , θp , γ(p̂))D(ẑ,−γ(p̂)− γ(−p̂))D(x̂, π) . (C.3.9)

Inserting this result in eq. (C.3.8) and using the relation

D(x̂, π)χλ(ẑ) = −iσ1χλ(ẑ) = −iχ−λ(ẑ) , (C.3.10)

we obtain

χλ(−p̂) = ξ−λ(p̂)χ−λ(p̂) , (C.3.11)

97An alternative convention (called the second-particle convention) advocated by Jacob and Wick [257] is to
define χλ(−p̂) by starting with χ−λ(ẑ) and then rotating the spinor by polar and azimuthal angles θp and φp. In
this case, χλ(−p̂) = χ−λ(p̂), and the extra phase factors of eq. (C.3.11) is absent, i.e. ξλ(p̂) = 1 in eq. (C.3.11).
However, this convention is less suited to scattering processes involving final states with more than two fermions.
Hence, we do not adopt the second-particle convention in this review.
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where the phase factor ξλ(p̂) is given by

ξλ(p̂) = ieiλ[γ(p̂)+γ(−p̂)] , λ = ±1
2 . (C.3.12)

Since γ is a real angle, it follows that:

ξ∗
λ
(p̂) =

1

ξλ(p̂)
= −ξ−λ(p̂) . (C.3.13)

Using eq. (C.3.12), we note that χλ(p̂) possesses the peculiar property that:

χλ(−(−p̂)) = −χλ(p̂) . (C.3.14)

This is a consequence of the fact that the result of two successive inversions is equivalent to

φp → φp+2π, which yields an overall change of sign of a spinor wave function [cf. eq. (C.1.12)].98

For example, corresponding to the two conventional choices for γ,

ξλ(p̂) =




(−1)

1
2
−λ
e−2iλφp for γ(p̂) = −φp , γ(−p̂) = −π + φp ,

i for γ(p̂) = γ(−p̂) = 0 ,
(C.3.15)

with the proviso that for p̂ = ±ẑ, we define φp according to eq. (C.1.7).

Suppose that the two fermions considered above have equal mass. In the center-of-mass

frame, if the four-momentum of one of the fermions is pµ = (E , ~p), then the four-momentum of

the other fermion is

p̃µ ≡ (E , −~p) . (C.3.16)

The following numerical identities are then satisfied: σ ·p̃ = σ ·p and σ ·p̃ = σ ·p. However, in

order to maintain covariance with respect to the undotted and dotted spinor indices, we shall

write these identities as:

p̃·σαβ̇ = σ0αα̇(p·σα̇β)σ0ββ̇ , (C.3.17)

p̃·σα̇β = σ0α̇α(p·σαβ̇)σ0β̇β . (C.3.18)

Taking the matrix square root of both sides of eqs. (C.3.17) and (C.3.18) removes one of the

factors of σ0 and σ0, respectively [cf. eqs. (2.108)–(2.114)]. Thus, using eqs. (3.1.19) and (C.3.11),

xα(−~p,−λ) =
√
p̃·σχ−λ(−p̂) = σ0

√
p·σ ξλ(p̂)χλ(~p) = σ0

αβ̇
ξλ(p̂) y

†β̇(~p, λ) . (C.3.19)

In this way, we can derive all relations of this kind for the helicity spinor wave functions:

xα(−~p,−λ) = ξλσ
0
αβ̇
y†β̇(~p, λ) = ωλξλ χλ(p̂) , (C.3.20)

yα(−~p,−λ) = ξ−λσ
0
αβ̇
x†β̇(~p, λ) = −2λω−λξ−λ χ−λ(p̂) , (C.3.21)

x†α̇(−~p,−λ) = ξ−λσ
0α̇β yβ(~p, λ) = 2λωλξ−λ χ−λ(p̂) , (C.3.22)

y†α̇(−~p,−λ) = ξλσ
0α̇β xβ(~p, λ) = ω−λξλ χλ(p̂) , (C.3.23)

98A slightly modified procedure (not adopted in this review) is to take the azimuthal angle of −p̂ to be φp ± π,
where the ± sign is chosen according to which of the two conditions 0 ≤ φp ± π < 2π is true. This procedure
would yield an extra minus sign in the definition of ξλ(p̂) when π ≤ φp < 2π. In this convention, two successive
inversions are equivalent to the identity rotation so that χλ(−(−p̂)) = χλ(p̂).
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where ω±λ ≡ ω±λ(~p) and ξλ ≡ ξλ(p̂). Raising the undotted index and lowering the dotted index

yields:

xα(−~p,−λ) = y†
β̇
(~p, λ) ξ−λσ

0β̇α = 2λωλξ−λχ
†
−λ(p̂) , (C.3.24)

yα(−~p,−λ) = x†
β̇
(~p, λ) ξλσ

0β̇α = ω−λξλ χ
†
λ(p̂) , (C.3.25)

x†α̇(−~p,−λ) = yβ(~p, λ) ξλσ
0
βα̇ = ωλξλ χ

†
λ(p̂) , (C.3.26)

y†α̇(−~p,−λ) = xβ(~p, λ) ξ−λσ
0
βα̇ = −2λω−λξ−λ χ

†
−λ(p̂) . (C.3.27)

Eqs. (C.3.20)–(C.3.27) can also be obtained directly from eqs. (C.3.4)–(C.3.7).

Appendix D: Matrix decompositions for mass matrix diagonal-
ization

In scalar field theory, the diagonalization of the scalar squared-mass matrix M2 is straightfor-

ward. For a theory of n complex scalar fields, M2 is an hermitian n × n matrix, which can be

diagonalized by a unitary matrix W :

W †M2W = m2 = diag(m2
1,m

2
2, . . . ,m

2
n) . (D.1)

For a theory of n real scalar fields,M2 is a real symmetric n×nmatrix, which can be diagonalized

by an orthogonal matrix Q:

QTM2Q = m2 = diag(m2
1,m

2
2, . . . ,m

2
n) . (D.2)

In both cases, the eigenvalues m2
k of M

2 are real. These are the standard matrix diagonalization

problems that are treated in all elementary linear algebra textbooks.

In spin-1/2 fermion field theory, the most general fermion mass matrix, obtained from the

Lagrangian, written in terms of two-component spinors, is complex and symmetric [cf. Sec-

tion 3.2]. If the Lagrangian exhibits a U(1) symmetry, then a basis can be found such that

fields that are charged under the U(1) pair up into Dirac fermions. The fermion mass matrix

then decomposes into the direct sum of a complex Dirac fermion mass matrix and a complex

symmetric neutral fermion mass matrix. In this Appendix, we review the linear algebra theory

relevant for the matrix decompositions associated with the general charged and neutral spin-1/2

fermion mass matrix diagonalizations. The diagonalization of the Dirac fermion mass matrix is

governed by the singular value decomposition of a complex matrix, as shown in Appendix D.1.

In contrast, the diagonalization of a neutral fermion mass matrix is governed by the Takagi

diagonalization of a complex symmetric matrix, which is treated in Appendix D.2.99 These two

99One may choose not to work in a basis where the fermion fields are eigenstates of the U(1) charge operator.
In this case, all fermions are governed by a complex symmetric mass matrix, which can be Takagi-diagonalized
according to the procedure described in Appendix D.2.
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techniques are compared and contrasted in Appendix D.3. Dirac fermions can also arise in the

case of a pseudo-real representation of fermion fields. As shown in Section 3.2, this latter case

requires the reduction of a complex antisymmetric fermion mass matrix to real normal form.

The relevant theorem and its proof are given in Appendix D.4.

D.1 Singular value decomposition

The diagonalization of the charged (Dirac) fermion mass matrix requires the singular value

decomposition of an arbitrary complex matrix M .

Theorem: For any complex [or real] n×n matrix M , unitary [or real orthogonal] matrices

L and R exist such that

LTMR =MD = diag(m1,m2, . . . ,mn), (D.1.1)

where the mk are real and non-negative. This is called the singular value decomposition of the

matrix M (e.g., see refs. [147,258]).

In general, the mk are not the eigenvalues of M . Rather, the mk are the singular values

of the general complex matrix M , which are defined to be the non-negative square roots of

the eigenvalues of M †M (or equivalently of MM †). An equivalent definition of the singular

values can be established as follows. Since M †M is an hermitian non-negative matrix, its

eigenvalues are real and non-negative and its eigenvectors, vk, defined by M †Mvk = m2
kvk, can

be chosen to be orthonormal.100 Consider first the eigenvectors corresponding to the non-zero

eigenvalues of M †M . Then, we define the vectors wk such that Mvk = mkw
∗
k. It follows that

m2
kvk =M †Mvk = mkM

†w∗
k, which yields: M †w∗

k = mkvk. Note that these equations also imply

that MM †w∗
k = m2

kw
∗
k. The orthonormality of the vk implies the orthonormality of the wk, and

vice versa. For example,

δjk = 〈vj |vk〉 =
1

mjmk
〈M †w∗

j |M †w∗
k〉 =

1

mjmk
〈wj |MM †w∗

k〉 =
mk

mj
〈w∗

j |w∗
k〉 , (D.1.2)

which yields 〈wk|wj〉 = δjk. If M is a real matrix, then the eigenvectors vk can be chosen to be

real, in which case the corresponding wk are also real.

If vi is an eigenvector of M †M with zero eigenvalue, then 0 = v†iM
†Mvi = 〈Mvi|Mvi〉,

which implies thatMvi = 0. Likewise, if w∗
i is an eigenvector ofMM † with zero eigenvalue, then

0 = wT

i MM †w∗
i = 〈MTwi|MTwi〉∗, which implies that MTwi = 0. Because the eigenvectors of

M †M [MM †] can be chosen orthonormal, the eigenvectors corresponding to the zero eigenvalues

of M [M †] can be taken to be orthonormal.101 Finally, these eigenvectors are also orthogonal

to the eigenvectors corresponding to the non-zero eigenvalues of M †M [MM †]. That is, if the

100We define the inner product of two vectors to be 〈v|w〉 ≡ v†w. Then, v and w are orthonormal if 〈v|w〉 = 0.
The norm of a vector is defined by ‖v ‖ = 〈v|v〉1/2.
101This analysis shows that the number of linearly independent zero eigenvectors of M†M [MM†] with zero

eigenvalue, coincides with the number of linearly independent eigenvectors of M [M†] with zero eigenvalue.
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indices i and j run over the eigenvectors corresponding to the zero and non-zero eigenvalues of

M †M [MM †], respectively, then

〈vj |vi〉 =
1

mj
〈M †w∗

j |vi〉 =
1

mj
〈w∗

j |Mvi〉 = 0 , (D.1.3)

and similarly 〈wj |wi〉 = 0.

Thus, we can define the singular values of a general complex n × n matrix M to be the

simultaneous solutions (with real non-negative mk) of:
102

Mvk = mkw
∗
k , wT

kM = mkv
†
k . (D.1.4)

The corresponding vk (wk), normalized to have unit norm, are called the right (left) singular

vectors of M . In particular, the number of linearly independent vk coincides with the number

of linearly independent wk and is equal to n.

Proof of the singular value decomposition theorem: Eqs. (D.1.2) and (D.1.3) imply

that the right [left] singular vectors can be chosen to be orthonormal. Consequently, the unitary

matrix R [L] can be constructed such that its kth column is given by the right [left] singular

vector vk [wk]. It then follows from eq. (D.1.4) that:

wT

kMvℓ = mkδkℓ , (no sum over k). (D.1.5)

In matrix form, eq. (D.1.5) coincides with eq. (D.1.1), and the singular value decomposition is

established. If M is real, then the right and left singular vectors, vk and wk, can be chosen to

be real, in which case eq. (D.1.1) holds for real orthogonal matrices L and R.

The singular values of a complex matrix M are unique (up to ordering), as they correspond

to the eigenvalues of M †M (or equivalently the eigenvalues of MM †). The unitary matrices L

and R are not unique. The matrix R must satisfy

R†M †MR =M2
D , (D.1.6)

which follows directly from eq. (D.1.1) by computing M †
DMD = M2

D. That is, R is a unitary

matrix that diagonalizes the non-negative definite matrixM †M . Since the eigenvectors ofM †M

are orthonormal, each vk corresponding to a non-degenerate eigenvalue of M †M can be multi-

plied by an arbitrary phase eiθk . For the case of degenerate eigenvalues, any orthonormal linear

combination of the corresponding eigenvectors is also an eigenvector of M †M . It follows that

within the subspace spanned by the eigenvectors corresponding to non-degenerate eigenvalues,

R is uniquely determined up to multiplication on the right by an arbitrary diagonal unitary ma-

trix. Within the subspace spanned by the eigenvectors of M †M corresponding to a degenerate

eigenvalue, R is determined up to multiplication on the right by an arbitrary unitary matrix.

102One can always find a solution to eq. (D.1.4) such that the mk are real and non-negative. Given a solution
where mk is complex, we simply write mk = |mk|eiθ and redefine wk → wke

iθ to remove the phase θ.
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Once R is fixed, L is obtained from eq. (D.1.1):

L = (MT)−1R∗MD . (D.1.7)

However, if some of the diagonal elements of MD are zero, then L is not uniquely defined.

Writing MD in 2×2 block form such that the upper left block is a diagonal matrix with positive

diagonal elements and the other three blocks are equal to the zero matrix of the appropriate

dimensions, it follows that, MD =MDW , where

W =




1 O

O W0


 , (D.1.8)

W0 is an arbitrary unitary matrix whose dimension is equal to the number of zeros that appear

in the diagonal elements of MD, and 1 and O are respectively the identity matrix and zero

matrix of the appropriate size. Hence, we can multiply both sides of eq. (D.1.7) on the right

by W , which means that L is only determined up to multiplication on the right by an arbitrary

unitary matrix whose form is given by eq. (D.1.8).103

If M is a real matrix, then the derivation of the singular value decomposition of M is given

by Eq. (D.1.1), where L and R are real orthogonal matrices. This result is easily established by

replacing “phase” with “sign” and replacing “unitary” by “real orthogonal” in the above proof.

D.2 Takagi diagonalization

The mass matrix of neutral fermions (or a system of two-component fermions in a generic

basis) is complex and symmetric. This mass matrix must be diagonalized in order to identify

the physical fermion mass eigenstates and to compute their masses. However, the fermion mass

matrix is not diagonalized by the standard unitary similarity transformation. Instead a different

diagonalization equation is employed that was discovered by Takagi [111], and rediscovered many

times since [147].104

Theorem: For any complex symmetric n × n matrix M , there exists a unitary matrix Ω

such that:

ΩTM Ω =MD = diag(m1,m2, . . . ,mn) , (D.2.1)

103Of course, one can reverse the above procedure by first determining the unitary matrix L. Eq. (D.1.1) implies
that LTMM†L∗ =M2

D, in which case L is determined up to multiplication on the right by an arbitrary [diagonal]
unitary matrix within the subspace spanned by the eigenvectors corresponding to the degenerate [non-degenerate]
eigenvalues of MM†. Having fixed L, one can obtain R = M−1L∗MD from eq. (D.1.1). As above, R is only
determined up to multiplication on the right by a unitary matrix whose form is given by eq. (D.1.8).
104Subsequently, it was recognized in Ref. [258] that the Takagi diagonalization was first established for nonsin-

gular complex symmetric matrices by Autonne [259]. In the physics literature, the first proof of eq. (D.2.1) was
given in ref. [149]. Applications of Takagi diagonalization to the study of neutrino mass matrices can be found in
refs. [5, 260].
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where the mk are real and non–negative. This is the Takagi diagonalization105 of the complex

symmetric matrix M .

In general, the mk are not the eigenvalues of M . Rather, the mk are the singular values of

the symmetric matrix M . From eq. (D.2.1) it follows that:

Ω†M †MΩ =M2
D = diag(m2

1,m
2
2, . . . ,m

2
n) . (D.2.2)

If all of the singular values mk are non-degenerate, then one can find a solution to eq. (D.2.1)

for Ω from eq. (D.2.2). This is no longer true if some of the singular values are degenerate.

For example, if M =
(

0 m
m 0

)
, then the singular value |m| is doubly–degenerate, but eq. (D.2.2)

yields Ω†Ω = 12×2, which does not specify Ω. That is, in the degenerate case, the physical

fermion states cannot be determined by the diagonalization of M †M . Instead, one must make

direct use of eq. (D.2.1). Below, we shall present a constructive method for determining Ω that

is applicable in both the non-degenerate and the degenerate cases.

Eq. (D.2.1) can be rewritten as MΩ = Ω∗MD, where the columns of Ω are orthonormal. If

we denote the kth column of Ω by vk, then,

Mvk = mkv
∗
k , (D.2.3)

where the mk are the singular values and the vectors vk are normalized to have unit norm.

Following Ref. [261], the vk are called the Takagi vectors of the complex symmetric n × n

matrix M . The Takagi vectors corresponding to non–degenerate non–zero [zero] singular values

are unique up to an overall sign [phase]. Any orthogonal [unitary] linear combination of Takagi

vectors corresponding to a set of degenerate non–zero [zero] singular values is also a Takagi

vector corresponding to the same singular value. Using these results, one can determine the

degree of non–uniqueness of the matrix Ω. For definiteness, we fix an ordering of the diagonal

elements of MD.
106 If the singular values of M are distinct, then the matrix Ω is uniquely

determined up to multiplication by a diagonal matrix whose entries are either ±1 (i.e., a diagonal
orthogonal matrix). If there are degeneracies corresponding to non–zero singular values, then

within the degenerate subspace, Ω is unique up to multiplication on the right by an arbitrary

orthogonal matrix. Finally, in the subspace corresponding to zero singular values, Ω is unique

up to multiplication on the right by an arbitrary unitary matrix.

For a real symmetric matrix M , the Takagi diagonalization [eq. (D.2.1)] still holds for a

unitary matrix Ω, which is easily determined as follows. Any real symmetric matrix M can be

diagonalized by a real orthogonal matrix Z,

ZTMZ = diag(ε1m1 , ε2m2 , . . . , εnmn) , (D.2.4)

105In Ref. [147], eq. (D.2.1) is called the Takagi factorization of a complex symmetric matrix. We choose to refer
to this as Takagi diagonalization to emphasize and contrast this with the more standard diagonalization of normal
matrices by a unitary similarity transformation. In particular, not all complex symmetric matrices are diagonal-
izable by a similarity transformation, whereas complex symmetric matrices are always Takagi-diagonalizable.
106Permuting the order of the singular values is equivalent to permuting the order of the columns of Ω.
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where the mk are real and non-negative and the εkmk are the real eigenvalues of M with

corresponding signs εk = ±1.107 Then, the Takagi diagonalization of M is achieved by taking:

Ωij = ε
1/2
i Zij , no sum over i . (D.2.5)

Proof of the Takagi diagonalization. To prove the existence of the Takagi diagonaliza-

tion of a complex symmetric matrix, it is sufficient to provide an algorithm for constructing the

orthonormal Takagi vectors vk that make up the columns of Ω. This is achieved by rewriting

the n×n complex matrix equation Mv = mv∗ [with m real and non–negative] as a 2n× 2n real

matrix equation [262,263]:

MR


 Re v

Im v


 ≡


 ReM − ImM

− ImM −ReM




 Re v

Im v


 = m


 Re v

Im v


 , where m ≥ 0 .(D.2.6)

Since M = MT, the 2n × 2n matrix MR ≡
(

ReM − ImM
− ImM −ReM

)
is a real symmetric matrix.108 In

particular, MR is diagonalizable by a real orthogonal similarity transformation, and its eigen-

values are real. Moreover, if m is an eigenvalue of MR with eigenvector (Re v , Im v), then −m
is an eigenvalue of MR with (orthogonal) eigenvector (− Im v , Re v). This observation implies

that MR has an equal number of positive and negative eigenvalues and an even number of zero

eigenvalues.109 Thus, eq. (D.2.3) has been converted into an ordinary eigenvalue problem for

a real symmetric matrix. Since m ≥ 0, we solve the eigenvalue problem MRu = mu for the

real eigenvectors u ≡ (Re v , Im v) corresponding to the non–negative eigenvalues of MR,
110

which then immediately yields the complex Takagi vectors, v. It is straightforward to prove

that the total number of linearly independent Takagi vectors is equal to n. Simply note that the

orthogonality of (Re v1 , Im v1) and (− Im v1 , Re v1) with (Re v2 , Im v2) implies that v†1v2 = 0.

Thus, we have derived a constructive method for obtaining the Takagi vectors vk. If there

are degeneracies, one can always choose the vk in the degenerate subspace to be orthonormal.

The Takagi vectors then make up the columns of the matrix Ω in eq. (D.2.1). A numerical

package for performing the Takagi diagonalization of a complex symmetric matrix has recently

been presented in ref. [264] (see also refs. [261,265] for previous numerical approaches to Takagi

diagonalization).

D.3 Relation between Takagi diagonalization and singular value decomposition

The Takagi diagonalization is a special case of the singular value decomposition. If the complex

matrixM in eq. (D.1.1) is symmetric, M =MT, then the Takagi diagonalization corresponds to

107In the case of mk = 0, we conventionally choose the corresponding εk = +1.
108The 2n× 2n matrix MR is a real representation of the n× n complex matrix M .
109Note that (− Im v , Re v) corresponds to replacing vk in eq. (D.2.3) by ivk. However, form < 0 these solutions

are not relevant for Takagi diagonalization (where the mk are by definition non–negative). The case of m = 0 is
considered in footnote 110.
110For m = 0, the corresponding vectors (Re v , Im v) and (− Im v , Re v) are two linearly independent eigen-

vectors of MR; but these yield only one independent Takagi vector v (since v and iv are linearly dependent).
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Ω = L = R. In this case, the right and left singular vectors coincide (vk = wk) and are identified

with the Takagi vectors defined in eq. (D.2.3). However as previously noted, the matrix Ω

cannot be determined from eq. (D.2.2) in cases where there is a degeneracy among the singular

values.111 For example, one possible singular value decomposition of the matrix M =
(

0 m
m 0

)

[with m assumed real and positive] can be obtained by choosing R =
(
1 0
0 1

)
and L =

(
0 1
1 0

)
, in

which case LTMR =
(
m 0
0 m

)
= MD. Of course, this is not a Takagi diagonalization because

L 6= R. Since R is only defined modulo the multiplication on the right by an arbitrary 2 × 2

unitary matrix O, then at least one singular value decomposition exists that is also a Takagi

diagonalization. For the example under consideration, it is not difficult to deduce the Takagi

diagonalization: ΩTMΩ =MD, where

Ω =
1√
2


1 i

1 −i


O , (D.3.1)

and O is any 2× 2 orthogonal matrix.

Since the Takagi diagonalization is a special case of the singular value decomposition, it

seems plausible that one can prove the former from the latter. This turns out to be correct; for

completeness, we provide the proof below. Our second proof depends on the following lemma:

Lemma: For any symmetric unitary matrix V , there exists a unitary matrix U such that

V = UTU .

Proof of the Lemma: For any n×n unitary matrix V , there exists an hermitian matrix H

such that V = exp (iH) (this is the polar decomposition of V ). If V = V T then H = HT = H∗

(since H is hermitian); therefore H is real symmetric. But, any real symmetric matrix can

be diagonalized by an orthogonal transformation. It follows that V can also be diagonalized

by an orthogonal transformation. Since the eigenvalues of any unitary matrix are pure phases,

there exists a real orthogonal matrix Q such that QTV Q = diag (eiθ1 , eiθ2 , . . . , eiθn). Thus, the

unitary matrix,

U = diag (eiθ1/2 , eiθ2/2 , . . . , eiθn/2)QT , (D.3.2)

satisfies V = UTU and the lemma is proved. Note that U is unique modulo multiplication on

the left by an arbitrary real orthogonal matrix.

Second Proof of the Takagi diagonalization. Starting from the singular value de-

composition of M , there exist unitary matrices L and R such that M = L∗MDR
†, where MD

is the diagonal matrix of singular values. Since M = MT = R∗MDL
†, we have two differ-

ent singular value decompositions for M . However, as noted below eq. (D.1.6), R is unique

modulo multiplication on the right by an arbitrary [diagonal] unitary matrix, V , within the

111This is in contrast to the singular value decomposition, where R can be determined from eq. (D.1.6) modulo
right multiplication by a [diagonal] unitary matrix in the [non-]degenerate subspace and L is then determined by
eq. (D.1.7) modulo multiplication on the right by eq. (D.1.8).
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[non-]degenerate subspace. Thus, it follows that a [diagonal] unitary matrix V exists such that

L = RV . Moreover, V = V T. This is manifestly true within the non-degenerate subspace where

V is diagonal. Within the degenerate subspace, MD is proportional to the identity matrix so

that L∗R† = R∗L†. Inserting L = RV then yields V T = V . Using the Lemma proved above,

there exists a unitary matrix U such that V = UTU . That is,

L = RUTU , (D.3.3)

for some unitary matrix U . Moreover, it is now straightforward to show that

MDU
∗ = U∗MD . (D.3.4)

To see this, note that within the degenerate subspace, eq. (D.3.4) is trivially true since MD is

proportional to the identity matrix. Within the non-degenerate subspace V is diagonal; hence

we may choose U = UT = V 1/2, so that eq. (D.3.4) is true since diagonal matrices commute.

Using eqs. (D.3.3) and (D.3.4), we can write the singular value decomposition of M as follows

M = L∗MDR
† = R∗U †U∗MDR

† = (RUT)∗MDU
∗R† = Ω∗MDΩ

† , (D.3.5)

where Ω ≡ RUT is a unitary matrix. Thus the existence of the Takagi diagonalization of an

arbitrary complex symmetric matrix [eq. (D.2.1)] is once again proved.

In the diagonalization of the two-component fermion mass matrix, M , the eigenvalues

of M †M typically fall into two classes—non-degenerate eigenvalues corresponding to neutral

fermion mass eigenstates and degenerate pairs corresponding to charged (Dirac) mass eigen-

states. In this case, the sector of the neutral fermions corresponds to a non-degenerate subspace

of the space of fermion fields. Hence, in order to identify the neutral fermion mass eigenstates, it

is sufficient to diagonalize M †M with a unitary matrix R [as in eq. (D.1.6)], and then adjust the

overall phase of each column of R so that the resulting matrix Ω satisfies ΩTMΩ =MD, where

MD is a diagonal matrix of the non-negative fermion masses. This last result is a consequence

of eqs. (D.3.3)–(D.3.5), where Ω = RV 1/2 and V is a diagonal matrix of phases.

D.4 Reduction of a complex antisymmetric matrix to real normal form

In the case of two-component fermions that transform under a pseudo-real representation of a

compact Lie group [cf. eq. (3.2.35)], the corresponding mass matrix is in general complex and

antisymmetric. In this case, one needs the antisymmetric analogue of the Takagi diagonalization

of a complex symmetric matrix [147].

Theorem: For any complex [or real] antisymmetric n×n matrix M , there exists a unitary

[or real orthogonal] matrix U such that:

UTMU = N ≡ diag






 0 m1

−m1 0


 ,


 0 m2

−m2 0


 , · · · ,


 0 mp

−mp 0


 , On−2p



 , (D.4.1)
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where N is written in block diagonal form with 2 × 2 matrices appearing along the diagonal,

followed by an (n− 2p)× (n − 2p) block of zeros (denoted by On−2p), and the mj are real and

positive. N is called the real normal form of an antisymmetric matrix [149,266,267].

Proof: A number of proofs can be found in the literature [148, 149, 266–268]. Here we

provide a proof inspired by ref. [266]. Following Appendix D.1, we first consider the eigenvalue

equation for M †M :

M †Mvk = m2
kvk , mk > 0 , and M †Muk = 0 , (D.4.2)

where we have distinguished the eigenvectors corresponding to positive eigenvalues and zero

eigenvalues, respectively. The quantities mk are the positive singular values of M . Noting that

u†kM
†Muk = 〈Muk |Muk〉 = 0, it follows that

Muk = 0 , (D.4.3)

so that the uk are the eigenvectors corresponding to the zero eigenvalues of M . For each

eigenvector of M †M with mk 6= 0, we define a new vector

wk ≡
1

mk
M∗v∗k . (D.4.4)

It follows that m2
kvk = M †Mvk = mkM

†w∗
k, which yields M †w∗

k = mkvk. Comparing with

eq. (D.1.4), we identify vk and wk as the right and left singular vectors, respectively, corre-

sponding to the non-zero singular values of M . For any antisymmetric matrix, M † = −M∗.

Hence,

Mvk = mkw
∗
k , Mwk = −mkv

∗
k , (D.4.5)

and

M †Mwk = −mkM
†v∗k = mkM

∗v∗k = m2
kwk , mk > 0 . (D.4.6)

That is, the wk are also eigenvectors of M †M .

The key observation is that for fixed k the vectors vk and wk are orthogonal, since eq. (D.4.5)

implies that:

〈wk|vk〉 = 〈vk|wk〉∗ = −
1

m2
k

〈Mwk|Mvk〉 = −
1

m2
k

〈wk|M †Mvk〉 = −〈wk|vk〉 , (D.4.7)

which yields 〈wk|vk〉 = 0. Thus, if all the mk are distinct, it follows that m2
k is a doubly

degenerate eigenvalue of M †M , with corresponding linearly independent eigenvectors vk and

wk, where k = 1, 2, . . . , p (and p ≤ 1
2n). The remaining zero eigenvalues are (n− 2p)-fold

degenerate, with corresponding eigenvectors uk (for k = 1, 2, . . . , n− 2p). If some of the mk are

degenerate, these conclusions still apply. For example, suppose that mj = mk for j 6= k, which

means that m2
k is at least a three-fold degenerate eigenvalue of M †M . Then, there must exist
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an eigenvector vj that is orthogonal to vk and wk such that M †Mvj = m2
kvj . We now construct

wj ≡M∗v∗j /mk according to eq. (D.4.4). According to eq. (D.4.7), wj is orthogonal to vj. But,

we still must show that wj is also orthogonal to vk and wk. But this is straightforward:

〈wj |wk〉 = 〈wk|wj〉∗ =
1

m2
k

〈Mvk|Mvj〉 =
1

m2
k

〈vk|M †Mvj〉 = 〈vk|vj〉 = 0 , (D.4.8)

〈wj |vk〉 = 〈vk|wj〉∗ = −
1

m2
k

〈Mwk|Mvj〉 = −
1

m2
k

〈wk|M †Mvj〉 = −〈wk|vj〉 = 0 , (D.4.9)

where we have used the assumed orthogonality of vj with vk and wk, respectively. If follows that

vj , wj , vk and wk are linearly independent eigenvectors corresponding to a four-fold degenerate

eigenvalue m2
k of M †M . Additional degeneracies are treated in the same way.

Thus, the number of non-zero eigenvalues of M †M must be an even number, denoted by

2p above. Moreover, one can always choose the complete set of eigenvectors {uk , vk , wk} of

M †M to be orthonormal. These orthonormal vectors can be used to construct a unitary matrix

U with matrix elements:

Uℓ , 2k−1 = (wk)ℓ , Uℓ , 2k = (vk)ℓ , k = 1 , 2 , . . . , p ,

Uℓ , k+2p = (uk)ℓ , k = 1 , 2 , . . . , n− 2p , (D.4.10)

for ℓ = 1 , 2 , . . . , n, where e.g., (vk)ℓ is the ℓth component of the vector vk with respect to the

standard orthonormal basis. The orthonormality of {uk , vk , wk} implies that (U †U)ℓk = δℓk

as required. Eqs. (D.4.3) and (D.4.5) are thus equivalent to the matrix equation MU = U∗N ,

which immediately yields eq. (D.4.1), and the theorem is proven. If M is a real antisymmetric

matrix, then all the eigenvectors of M †M can be chosen to be real, in which case U is a real

orthogonal matrix.

Finally, we address the non-uniqueness of the matrix U . For definiteness, we fix an ordering

of the 2 × 2 blocks containing the mk in the matrix N . In the subspace corresponding to a

non-zero singular value of degeneracy d, U is unique up to multiplication on the right by a

2d× 2d unitary matrix S that satisfies:

STJS = J , (D.4.11)

where the 2d× 2d matrix J , defined by

J = diag






 0 1

−1 0


 ,


 0 1

−1 0


 , · · · ,


 0 1

−1 0





 , (D.4.12)

is a block diagonal matrix with d blocks of 2 × 2 matrices. A unitary matrix S that satisfies

eq. (D.4.11) is an element of the unitary symplectic group, Sp(d). If there are no degeneracies

among the mk, then d = 1. Identifying Sp(1)∼=SU(2), it follows that within the subspace
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corresponding to a non-degenerate singular value, U is unique up to multiplication on the right

by an arbitrary SU(2) matrix. Finally, in the subspace corresponding to the zero eigenvalues

of M , U is unique up to multiplication on the right by an arbitrary unitary matrix.

Appendix E: Lie group theoretical techniques for gauge theories

E.1 Basic facts about Lie groups, Lie algebras and their representations

Consider a compact connected Lie Group G [269]. The most general form for G is a direct

product of compact simple groups and U(1) groups. If no U(1) factors are present, then G is

semisimple. For any U ∈ G,
U = exp(−iθaT a) , (E.1.1)

where the T a are called the generators of G, and the θa are real numbers that parameterize the

elements of G. The corresponding real Lie algebra g consists of arbitrary real linear combinations

of the generators, θaT a. The Lie group generators T a satisfy the commutation relations:

[T a,T b] = ifabc T c , (E.1.2)

where the real structure constants fabc define the compact Lie algebra. The generator indices

run over a, b, c = 1, 2, . . . , dG, where dG is the dimension of the Lie algebra. For compact

Lie algebras, the Killing form gab = Tr(T aT b) is positive definite, so one can always choose a

basis for the Lie algebra in which gab ∝ δab (where the proportionality constant is a positive

real number). With respect to this new basis, the structure constants fabc ≡ gadf bcd are totally

antisymmetric with respect to the interchange of the indices a, b and c. Henceforth, we shall

always assume that such a preferred basis of generators has been chosen.

The elements of the compact Lie group G act on a multiplet of fields that transform under

some dR-dimensional representation R of G. The group elements U ∈ G are represented by

dR×dR unitary matrices, DR(U) = exp(−iθaT a
R), where the T

a
R are dR×dR hermitian matrices

that satisfy eq. (E.1.2) and thus provide a representation of the Lie group generators. For any

representation R of a semisimple group, TrT a
R = 0 for all a. A representation R′ is unitarily

equivalent to R if there exists a fixed unitary matrix S such that DR′(U) = S−1DR(U)S for all

U ∈ G. Similarly, the corresponding generators satisfy T a
R′ = S−1T a

RS for all a = 1, 2, . . . , dG.

For compact semisimple Lie groups, two representations are noteworthy. If G is one of

the classical groups, SU(N) [for N ≥ 2], SO(N) [for N ≥ 3] or Sp(N/2) [the latter is defined

by eqs. (D.4.11) and (D.4.12) for even N ≥ 2], then the N × N matrices that define these

groups comprise the fundamental (or defining) representation F , with dF = N . For example,

the fundamental representation of SU(N) consists of N ×N unitary matrices with determinant

equal to one, and the corresponding generators comprise a suitably chosen basis for the N ×N
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traceless hermitian matrices. Every Lie group G also possesses an adjoint representation A, with

dA = dG. The matrix elements of the generators in the adjoint representation are given by112

(T a
A)bc = −ifabc . (E.1.3)

Given the unitary representation matrices DR(U) of the representation R of G, the ma-

trices [DR(U)]∗ constitute the conjugate representation R∗. Equivalently, if the T a
R comprise a

representation of the Lie algebra g, then the −(T a
R)

∗ = −(T a
R)T comprise a representation R∗ of

g of the same dimension dR. If R and R∗ are unitarily equivalent representations, then we say

that the representation R is self-conjugate. Otherwise, we say that the representation R is com-

plex, or “strictly complex” in the language of ref. [270]. However, the representation matrices

DR(U) of a self-conjugate representation can also be complex. We can then define two classes

of self-conjugate representations. If R and R∗ are unitarily equivalent to a representation R′

that satisfies the reality property [DR′(U)]∗ = [DR′(U)] for all U ∈ G (equivalently, the matrices

iT a
R′ are real for all a), then R is said to be real, or “strictly real” in the language of ref. [270].

If R and R∗ are unitarily equivalent representations, but neither is unitarily equivalent to a

representation that satisfies the reality property above, then R is said to be pseudo-real.

Henceforth, we drop the adjective “strictly” and simply refer to real, pseudo-real and com-

plex representations. Self-conjugate representations are either real or pseudo-real. An important

theorem states that for self-conjugate representations, there exists a constant unitary matrix W

such that [270]

[DR(U)]∗ =WDR(U)W−1 , or equivalently, (iT a
R)∗ =W (iT a

R)W
−1 , (E.1.4)

where

WW ∗ = 1 , WT =W , for real representations , (E.1.5)

WW ∗ = −1 , WT = −W , for pseudo-real representations , (E.1.6)

and 1 is the dR × dR identity matrix. Taking the determinant of eq. (E.1.6), and using the fact

that W is unitary (and hence invertible), it follows that 1 = (−1)dR . Therefore, a pseudo-real

representation must be even-dimensional.

If we redefine the basis for the Lie group generators by T a
R → V −1T a

R V , where V is unitary,

then W → V TWV . We can make use of this change of basis to transform W to a canonical

form. Since W is unitary, its singular values (i.e. the positive square roots of the eigenvalues of

W †W ) are all equal to 1. Hence, in the two cases corresponding to WT = ±W , respectively,

112Since the fabc are real, the iT a

A are real antisymmetric matrices. The heights of the adjoint labels a, b and c
are not significant, as they can be lowered by the inverse Killing form given by gab ∝ δab in the preferred basis.
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eqs. (D.2.1) and (D.4.1) yield the following canonical forms (for an appropriately chosen V ),

W = 1 , for a real representation R, with εη = +1 , (E.1.7)

W = J , for a pseudo-real representation R, with εη = −1 , (E.1.8)

where J ≡ diag
{(

0 1
−1 0

)
,
(

0 1
−1 0

)
, · · · ,

(
0 1

−1 0

)}
is a dR × dR matrix (and dR is even).

There are many examples of complex, real and pseudo-real representations in mathematical

physics. For example, the fundamental representation of SU(N) is complex for N ≥ 3. The

adjoint representation of any compact Lie group is real [cf. footnote 112]. The simplest example

of a pseudo-real representation is the two-dimensional representation of SU(2),113 where T a =
1
2τ

a (and the τa are the usual Pauli matrices). More generally, the generators of a pseudo-real

representation must satisfy

(iT a
R)∗ = C−1(iT a

R)C , (E.1.9)

for some fixed unitary antisymmetric matrix C [previously denoted by W−1 in eqs. (E.1.4) and

(E.1.6)]. For the doublet representation of SU(2) just given, Cab = (iτ2)ab ≡ ǫab is the familiar

SU(2)-invariant tensor.

Finally, we note that for U(1), all irreducible representations are one-dimensional. The

structure constants vanish and any d-dimensional representation of the U(1)-generator is given

by the d×d identity matrix multiplied by the corresponding U(1)-charge. For a Lie group that is

a direct product of a semisimple group and U(1) groups, TrT a
R is non-zero when a corresponds

to one of the U(1)-generators, unless the sum of the corresponding U(1)-charges of the states of

the representation R vanishes.

E.2 The quadratic and cubic index and Casimir operator

In this section, we define the index and Casimir operator of a representation of a compact

semisimple Lie algebra g. The index I2(R) of the representation R is defined by [269,271–273]

Tr(T a
RT

b
R) = I2(R)δ

ab , (E.2.1)

where I2(R) is a positive real number that depends on R. Once I2(R) is defined for one represen-

tation, its value is uniquely fixed for any other representation. In the case of a simple compact

Lie algebra g, it is traditional to normalize the generators of the fundamental (or defining)

representation F according to114

Tr(T a
FT

b
F ) =

1
2δ
ab . (E.2.2)

113No unitary matrix W exists such that the WiτaW−1 are real for all a = 1, 2, 3. Thus, the two-dimensional
representation of SU(2) is not real. However, (iτa)∗ = (iτ 2)(iτa)(iτ 2)−1 for a = 1, 2, 3, which proves that the
two-dimensional representation of SU(2) is pseudo-real.
114In the literature, the index is often defined as the ratio I2(R)/I2(F ), where I2(F ) is fixed by some convention.

This has the advantage that the index of R is independent of the normalization convention of the generators. In
this Appendix, we will simply refer to I2(R) as the index.
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If the representation R is reducible, it can be decomposed into the direct sum of irreducible

representations, R =
∑

k Rk. In this case, the index of R is given by

I2(R) =
∑

k

I2(Rk) . (E.2.3)

The index of a tensor product of two representations R1 and R2 is given by [271]

I2(R1 ⊗R2) = dR1I2(R2) + dR2I2(R1) . (E.2.4)

Finally, we note that if R∗ is the complex conjugate of the representation R, then

I2(R
∗) = I2(R) . (E.2.5)

A Casimir operator of a Lie algebra g is an operator that commutes with all the generators

T a. If the representation of the T a is irreducible, then Schur’s lemma implies that the Casimir

operator is a multiple of the identity. The proportionality constant depends on the representation

R. The quadratic Casimir operator of an irreducible representation R is given by

(T 2
R)i

j ≡ (T a
R)i

k(T a
R)k

j = CRδi
j , (E.2.6)

where the sum over the repeated indices are implicit and i, j, k = 1, 2 . . . dR. A simple compu-

tation then yields the eigenvalue of the quadratic Casimir operator, CR,

CR =
I2(R)dG
dR

. (E.2.7)

For a simple Lie algebra (where the adjoint representation is irreducible), it immediately follows

that CA = I2(A). For a reducible representation, T 2 is a block diagonal matrix consisting of

dRk × dRk blocks given by CRk1 for each irreducible component Rk of R.

The example of the simple Lie algebra su(N) is well known. The dimension of this Lie

algebra (equal to the number of generators) is given by N2−1. As previously noted, dF = N and

I2(F ) =
1
2 . It then follows that CF = (N2−1)/(2N). One can also check that CA = I2(A) = N .

The Lie algebras su(N) [N ≥ 3] are the only simple Lie algebra that possesses a cubic

Casimir operator. First, we define the symmetrized trace of three generators [273,274]:

Dabc ≡ Str (T aT bT c) = 1
6 Tr(T

aT bT c + perm.) , (E.2.8)

where “perm.” indicates five other terms obtained by permuting the indices a, b and c in all

possible ways. Due to the properties of the trace, it follows that for a given representation R,

Dabc(R) = 1
2 Tr

[
{T a

R,T
b
R}T c

R

]
. (E.2.9)

For the N -dimensional defining representation of su(N), it is conventional to define

dabc ≡ 2Tr
[
{T a

F ,T
b
F }T c

F

]
. (E.2.10)
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One important property of the dabc is [275,276]:

dabcdabc =
(N2 − 1)(N2 − 4)

N
. (E.2.11)

In general, Dabc(R) is proportional to dabc. In particular, the cubic index I3(R) of a representa-

tion R is defined such that [273,275,277],

Dabc(R) = I3(R)d
abc . (E.2.12)

Having fixed I3(F ) =
1
4 , the cubic index is uniquely determined for all representations of

su(N) [275,277–279]. As in the case of the quadratic index I2(R), we have:

I3(R) =
∑

k

I3(Rk) , (E.2.13)

for a reducible representation R =
∑

k Rk. The cubic index of a tensor product of two represen-

tations R1 and R2 is given by [277]

I3(R1 ⊗R2) = dR1I3(R2) + dR2I3(R1) . (E.2.14)

If the generators of the representation R are T a
R, then the generators of the complex conjugate

representation R∗ are −T a
R
T. It then follows that

I3(R
∗) = −I3(R) . (E.2.15)

In particular, the cubic index of a self-conjugate representation vanishes. Note that the converse

is not true. That is, it is possible for the cubic index of a complex representation of su(N) to

vanish in special circumstances [279].

One can show that among the simple Lie groups, Dabc = 0 except for the case of SU(N),

when N ≥ 3 [275]. For any non-semisimple Lie group (i.e., a Lie group that is a direct product

of simple Lie groups and at least one U(1) factor), Dabc is generally non-vanishing. For example,

suppose that the T a
R constitute an irreducible representation of the generators of G×U(1), where

G is a semisimple Lie group. Then the U(1) generator (which we denote by setting a = Q) is

T
Q
R ≡ q1, where q is the corresponding U(1)-charge. It then follows that DQab = qI2(R)δ

ab.

More generally, for a compact non-semisimple Lie group, Dabc can be non-zero when either one

or three of its indices corresponds to a U(1) generator.

In the computation of the anomaly [cf. Section 6.26], the quantity Tr(T a
RT

b
RT c

R) appears.

We can evaluate this trace using eqs. (E.1.2) and (E.2.12):

Tr(T a
RT b

RT
c
R) = I3(R)d

abc +
i

2
I2(R)f

abc . (E.2.16)

The cubic Casimir operator of an irreducible representation R is given by

(T 3
R)i

j ≡ dabc(T a
RT

b
RT c

R)i
j = C3Rδi

j . (E.2.17)

191



Using eqs. (E.2.11) and (E.2.12), we obtain a relation between the eigenvalue of the cubic Casimir

operator, C3R and the cubic index [275]:

C3R =
(N2 − 1)(N2 − 4)I3(R)

NdR
. (E.2.18)

Again, we provide two examples. For the fundamental representation of su(N), I3(F ) = 1
4

and C3F = (N2 − 1)(N2 − 4)/(4N2). For the adjoint representation, I3(A) = C3A = 0, since

the adjoint representation is self-conjugate. A general formula for the eigenvalue of the cubic

Casimir operator in an arbitrary su(N) representation [or equivalently the cubic index I3(R),

which is related to C3R by eq. (E.2.18)] can be found in refs. [275,277–279].

Appendix F: Path integral treatment of two-component fermion
propagators

In Section 4.2 we derived the two-component fermion propagators in momentum space, which

are the Fourier transforms of the free-field expectation values of time-ordered products of two

two-component fermion fields, for example,

〈0|Tξα(x)ξ†β̇(y) |0〉FT ≡
∫
d4w 〈0|Tξα(x)ξ†β̇(y) |0〉 e

ip·w , w ≡ x− y , (F.1)

where the (translationally invariant) expectation values such as 〈0|Tξα(x)ξ†β̇(y) |0〉 are functions
of the coordinate difference w ≡ x− y. In Section 4.2, the Fourier transforms of these quantities

were computed by using the free-field expansion obtained from the canonical quantization pro-

cedure, and then evaluating the resulting spin sums. In this Appendix, we provide a derivation

of the same result by employing path integral techniques. We follow the analysis given in Ap-

pendix C of ref. [280] (with a few minor changes in notation). For a similar textbook treatment

of two-component fermion propagators see for example ref. [220]. For the analogous treatment

of the four-component fermion propagator, see for example ref. [114].

We first consider the action for a single massive neutral two-component fermion ξα(x),

coupled to an anticommuting two-component fermionic source term Jα(x) [cf. eq. (3.1.1)]:

S =

∫
d4x (L + Jξ + ξ†J†) =

∫
d4x

{
1
2

[
iξ†σµ∂µξ + iξσµ∂µξ

† −m(ξξ + ξ†ξ†)
]
+ Jξ + ξ†J†

}
,

(F.2)

where we have split the kinetic energy term symmetrically into two terms. The generating

functional is given by

W [J, J† ] = N

∫
DξDξ† eiS[ξ, ξ†, J, J†] , (F.3)

where N is a normalization factor chosen such that W [0, 0] = 1 and DξDξ† is the integration

measure. It is convenient to Fourier transform the fields ξ(x), ξ†(x) and sources J(x), J†(x) in
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eq. (F.3), and rewrite the action in terms of the corresponding Fourier coefficients ξ̂(p), ξ̂†(p) , Ĵ(p)

and Ĵ †(p):

ξα(x) =

∫
d4p

(2π)4
e−ip·xξ̂α(p) , ξ†α̇(x) =

∫
d4p

(2π)4
eip·xξ̂ †α̇(p) , (F.4)

Jα(x) =

∫
d4p

(2π)4
e−ip·xĴα(p) , J†

α̇(x) =

∫
d4p

(2π)4
eip·xĴ †

α̇ (p) . (F.5)

Furthermore, we introduce the integral representation of the delta function:

δ(4)(x− x′) =
∫

d4p

(2π)4
e−ip·(x−x

′) . (F.6)

In order to rewrite eq. (F.3) in a more convenient matrix form, we introduce the following

definitions:

Ω(p) ≡




ξ̂ †α̇(−p)

ξ̂α(p)


 , X(p) ≡




Ĵα(p)

Ĵ †α̇(−p)


 , M(p) ≡




p·σαβ̇ −mδα
β

−mδα̇β̇ p·σα̇β


 .

(F.7)

Note thatM is an hermitian matrix. We can then rewrite the action [eq. (F.2)] in the following

matrix form [after using eqs. (2.58) and (2.59) to write the product of the spinor field and the

source in a symmetrical fashion]:

S =
1

2

∫
d4p

(2π)4

(
Ω†MΩ+Ω†X +X†Ω

)
. (F.8)

The linear term in the field Ω can be removed by a field redefinition

Ω′ = Ω+M−1X . (F.9)

In terms of Ω′, the action now takes the convenient form:

S =
1

2

∫
d4p

(2π)4

(
Ω′†MΩ′ −X†M−1X

)
, (F.10)

where the inverse of the matrixM is given by

M−1 =
1

p2 −m2




p·σα̇β mδα̇β̇

mδα
β p·σαβ̇


 . (F.11)

The Jacobian of the field transformation given in eq. (F.9) is unity. Hence, one can insert

the new action, eq. (F.10), in the generating functional, eq. (F.3) to obtain (after dropping the

primes on the two-component fermion fields):

W [Ĵ , Ĵ † ] = N

∫
DξDξ† exp

{
i

2

∫
d4p

(2π)4

(
Ω†MΩ−X†M−1X

)}
(F.12)

= N

[∫
DξDξ† exp

{
i

2
Ω†MΩ

}]
exp

{
− i
2

∫
d4p

(2π)4
X†M−1X

}
(F.13)

= exp

{
− i
2

∫
d4p

(2π)4
X†M−1X

}
, (F.14)
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where we have defined the normalization constant N such thatW [0, 0] = 1. Inserting the explicit

forms for X andM into eq. (F.14), we obtain

W [Ĵ , Ĵ † ] = exp

{
−1

2

∫
d4p

(2π)4

(
Ĵα(−p)

ip·σαβ̇
p2 −m2

Ĵ †β̇(−p) + Ĵ †
α̇ (p)

ip·σα̇β
p2 −m2

Ĵβ(p)

+Ĵα(−p) imδα
β

p2 −m2
Ĵβ(p) + Ĵ †

α̇ (p)
imδα̇β̇
p2 −m2

Ĵ †β̇(−p)
)}

. (F.15)

Using eq. (2.60), it is convenient to rewrite the first two terms of the integrand on the right-hand

side of eq. (F.15) in two different ways:

1

2

∫
d4p

(2π)4

[
Ĵα(−p)

ip·σαβ̇
p2 −m2

Ĵ †β̇(−p) + Ĵ †
α̇ (p)

ip·σα̇β
p2 −m2

Ĵβ(p)

]

=

∫
d4p

(2π)4
Ĵα(−p)

ip·σαβ̇
p2 −m2

Ĵ †β̇(−p) =
∫

d4p

(2π)4
Ĵ †
α̇ (p)

ip·σα̇β
p2 −m2

Ĵβ(p) , (F.16)

where we have changed integration variables from p→ −p in relating the two terms above. The

vacuum expectation value of the time-ordered product of two spinor fields in configuration space

is obtained by taking two functional derivatives of the generating functional with respect to the

sources J and J† and then setting J = J† = 0 at the end of the computation (e.g., see ref. [114]).

For example,
(
−i

−→
δ

δJα(x1)

)
W [J, J†]

(
−i

←−
δ

δJ†β̇(x2)

)∣∣∣∣∣
J=J†=0

= N

∫
DξDξ† ξα(x1)ξ†β̇(x2) exp

(
i

∫
d4xL

)

= 〈0|Tξα(x1)ξ†β̇(x2)|0〉 , (F.17)

where the functional derivatives act in the indicated direction (which ensures that no extra

minus signs are generated due to the anticommutativity properties of the sources and their

functional derivatives). To obtain the two-point functions involving the product of two spinor

fields with different combinations of dotted and undotted spinors, it may be more convenient

to write Jξ = ξJ and/or ξ†J† = J†ξ† in eq. (F.3). One can then easily verify the following

expressions for the four possible two-point functions:

〈0|Tξα(x1)ξ†β̇(x2)|0〉 =
(
−i

−→
δ

δJα(x1)

)
W [J, J†]

(
−i

←−
δ

δJ†β̇(x2)

)∣∣∣∣∣
J=J†=0

, (F.18)

〈0|Tξ†α̇(x1)ξβ(x2)|0〉 =
(
−i

−→
δ

δJ†
α̇(x1)

)
W [J, J†]

(
−i

←−
δ

δJβ(x2)

)∣∣∣∣∣
J=J†=0

, (F.19)

〈0|Tξ†α̇(x1)ξ†β̇(x2)|0〉 =
(
−i

−→
δ

δJ†
α̇(x1)

)
W [J, J†]

(
−i

←−
δ

δJ†β̇(x2)

)∣∣∣∣∣
J=J†=0

, (F.20)

〈0|Tξα(x1)ξβ(x2)|0〉 =
(
−i

−→
δ

δJα(x1)

)
W [J, J†]

(
−i

←−
δ

δJβ(x2)

)∣∣∣∣∣
J=J†=0

. (F.21)
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As an example, we provide details for the evaluation of eq. (F.18). Using eqs. (F.15) and

(F.16), we obtain:

〈0|Tξα(x1)ξ†β̇(x2)|0〉 =
−→
δ

δJα(x1)

(∫
d4p

(2π)4
Ĵα(−p)

ip·σαβ̇
p2 −m2

Ĵ †β̇(−p)
) ←−

δ

δJ†β̇(x2)
. (F.22)

The chain rule for functional differentiation and the inverse Fourier transforms of eq. (F.5) yield:

δ

δJα(x1)
=

∫
d4p1

δĴβ(−p1)
δJα(x1)

δ

δĴβ(−p1)
=

∫
d4p1 e

−ip1 ·x1 δ

δĴα(−p1)
, (F.23)

δ

δJ†β̇(x2)
=

∫
d4p2

δĴ †α̇(−p2)
δJ†β̇(x2)

δ

δĴ †α̇(−p2)
=

∫
d4p2 e

ip2 ·x2 δ

δĴ †β̇(−p2)
. (F.24)

Applying eqs. (F.23) and (F.24) to eq. (F.22), we obtain:

〈0|Tξα(x1)ξ†β̇(x2)|0〉 =
∫

d4p

(2π)4
e−ip·(x1−x2)

ip·σαβ̇
p2 −m2

, (F.25)

which is equivalent to eq. (4.2.1) of Section 4.2. With the same methods applied to eqs. (F.19)–

(F.21), one can easily reproduce the results of eqs. (4.2.2)–(4.2.4).

We next consider the action for a single massive Dirac two-component fermion. We shall

work in a basis of fields where the action, including external anticommuting sources, is given by

S[χ, χ†, η, η†, Jχ, J
†
χ, Jη , J

†
η ] =

∫
d4x
[
iχ†σµ∂µχ+ iη†σµ∂µη −m(χη + χ†η†)

+Jχχ+ χ†J†
χ + Jηη + η†J†

η

]
. (F.26)

Following the techniques employed above, we introduce Fourier coefficients for all the fields and

sources and define

Ωc(p) ≡



η̂ †α̇(−p)

χ̂α(p)


 , Xc(p) ≡




Ĵηα(p)

Ĵ †α̇
χ (−p)


 . (F.27)

The action functional, eq. (F.26), can then rewritten in matrix form as before (but with no

overall factor of 1/2):

S =

∫
d4p

(2π)4

(
Ω†
cMΩc +Ω†

cXc +X†
cΩc

)
, (F.28)

where M is again given by eq. (F.7). The remaining calculation proceeds as before with

few modifications, and yields the Dirac two-component fermion free-field propagators given

in eqs. (4.2.7)–(4.2.10).

Appendix G: Correspondence to four-component spinor notation

G.1 Dirac gamma matrices and four-component spinors

In four-dimensional Minkowski space, four-component spinor notation employs four-component

Dirac spinor fields and the 4× 4 Dirac gamma matrices, whose defining property is:

{γµ, γν} = 2gµν1 , (G.1.1)
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where 1 is the 4× 4 identity matrix.

The correspondence between the two-component spinor notation and the four-component

Dirac spinor notation is most easily exhibited in the basis in which γ5 is diagonal (this is called

the chiral representation115). In 2×2 blocks, the gamma matrices are given by:116

γµ ≡


 0 σµ

αβ̇

σµ α̇β 0


 , γ5 ≡ iγ0γ1γ2γ3 =


−δα

β 0

0 δα̇β̇


 , (G.1.2)

and the 4× 4 identity matrix that appears in eq. (G.1.1) can be written as:

1 =


δα

β 0

0 δα̇β̇


 . (G.1.3)

In addition, we identify the generators of the Lorentz group in the (12 , 0)⊕(0, 12) representation:117

1
2Σ

µν ≡ i

4
[γµ, γν ] =


σ

µν
α
β 0

0 σµνα̇β̇


 , (G.1.4)

where Σµν satisfies the duality relation,

γ5Σ
µν = 1

2 iǫ
µνρτΣρτ . (G.1.5)

A four-component Dirac spinor field, Ψ(x), is made up of two mass-degenerate two-component

spinor fields, χα(x) and ηα(x), of opposite U(1)-charge as follows:

Ψ(x) ≡



χα(x)

η†α̇(x)


 . (G.1.6)

We next introduce the chiral projections operators,

PL ≡ 1
2 (1− γ5) =


δα

β 0

0 0


 , and PR ≡ 1

2(1+ γ5) =


0 0

0 δα̇β̇


 , (G.1.7)

and the (left and right-handed) Weyl spinor fields, ΨL(x) and ΨR(x), which are defined by:118

ΨL(x) ≡ PLΨ(x) =



χα(x)

0


 , ΨR(x) ≡ PRΨ(x) =




0

η†α̇(x)


 . (G.1.8)

115For a review of other representations of the Dirac gamma matrices and their properties, see e.g. refs. [281,282].
116Employing the conventions for the sigma matrices described in Appendix A, it follows that the definition of
γµ is independent of the choice of metric signature, whereas γµ ≡ gµνγ

ν changes sign under a reversal of the
metric signature. In the metric signature convention with g00 = +1, our gamma matrix conventions follow those
of ref. [114], whereas in the convention with g00 = −1, our gamma matrix conventions follow those of ref. [65].
117In most textbooks, Σµν is called σµν . Here, we use the former symbol so that there is no confusion with

definition of σµνα
β given in eq. (2.69).

118In the earlier literature, a different set of conventions for the sigma matrices in which the roles of σ and σ
were reversed [e.g, as in eqs. (A.11) and (A.12)] resulted in γ5 = diag(12×2 , −12×2) in the chiral representation,
which differs from our convention by an overall sign [cf. eq. (G.1.2)]. As a result, in this latter convention, PL
[PR] projects out the raised dotted [lowered undotted] two-component spinor field. This latter convention is still
prevalent in the literature of the spinor helicity method (see footnote 156 in Appendix I.2).
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Equivalently, one can define the Weyl spinors ΨL and ΨR as the four-component spinor eigen-

states of γ5 with corresponding eigenvalues −1 and +1, respectively (i.e., γ5ΨL,R = ∓ΨL,R).

The Dirac conjugate field Ψ(x) and the charge conjugate field ΨC(x) are defined by:

Ψ(x) ≡ Ψ†A =
(
ηα(x), χ†

α̇(x)
)
, (G.1.9)

ΨC(x) ≡ CΨT(x) =



ηα(x)

χ†α̇(x)


 , (G.1.10)

where the Dirac conjugation matrix A and the charge conjugation matrix C satisfy [283–285]:

AγµA
−1 = γ†µ , C−1γµC = −γTµ . (G.1.11)

It is convenient to introduce a notation for left and right-handed charge-conjugated fields (which

are also Weyl spinor fields) following the conventions of refs. [67, 286],119

ΨC
L
(x) ≡ PLΨC(x) = CΨ

T

R(x) = [ΨR(x)]
C , (G.1.12)

ΨC
R
(x) ≡ PRΨC(x) = CΨ

T

L(x) = [ΨL(x)]
C . (G.1.13)

To fix the properties of A and C, it is conventional to impose two additional conditions:

Ψ = A−1Ψ
†
, (ΨC)C = Ψ . (G.1.14)

The first of these conditions together with eq. (G.1.9) is equivalent to the statement that ΨΨ

is hermitian. The second condition corresponds to the statement that the (discrete) charge

conjugation transformation applied twice is equal to the identity operator. Using eqs. (G.1.11)

and (G.1.14) and the defining property of the gamma matrices [eq. (G.1.1)], one can show

(independently of the gamma matrix representation) that the matrices A and C must satisfy:

A† = A , CT = −C , (AC)−1 = (AC)∗ . (G.1.15)

Following ref. [135], it is convenient to introduce a matrix D such that

D ≡ CAT , D−1γµD = −γ∗µ , (G.1.16)

and D∗D = DD∗ = 1. The charge-conjugated four-component spinor is then given by:

ΨC(x) ≡ DΨ∗(x) . (G.1.17)

A four-component Majorana spinor field, ΨM (x), is defined by imposing the constraint ΨC(x) =

Ψ(x) on a four-component Dirac spinor, which sets η = χ. That is, the Majorana condition is

ΨM (x) = DΨ∗
M(x) =


χα(x)

χ†α̇(x)


 . (G.1.18)

119The reader is warned that the opposite convention is often employed in the literature (e.g., see ref. [287]) in
which ΨCL is a right-handed field and ΨCR is a left-handed field.
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For a review of the Majorana field and its properties, see e.g. refs. [143,144].

For completeness, we also introduce a matrix B that satisfies [283–285,288]:

B ≡ −C−1γ5 , BγµB
−1 = γTµ . (G.1.19)

The matrix B arises in the study of time reversal invariance of the Dirac equation. In the chiral

representation, A, B, C and D are explicitly given by

A =


 0 δα̇β̇

δα
β 0


 , C =


ǫαβ 0

0 ǫα̇β̇


 , (G.1.20)

B =


ǫ

αβ 0

0 −ǫα̇β̇


 , D =


 0 ǫαβ

ǫα̇β̇ 0


 . (G.1.21)

Note the numerical equalities, A = γ0, B = γ1γ3, C = iγ0γ2 andD = −iγ2. However these iden-
tifications do not respect either the structure of the undotted and dotted spinor indices specified

in eqs. (G.1.20) and (G.1.21), or the four-component spinor index structure introduced below

[cf. eqs. (G.1.46) and (G.1.47)].120 In translating between two-component and four-component

spinor notation, eqs. (G.1.20) and (G.1.21) should always be used. In practical four-component

spinor calculations, there is often no harm in employing the numerical values for A, B, C and D.

Using eqs. (G.1.11)–(G.1.19), the following results are easily derived:

AΓA−1 = ηA
Γ
Γ† , ηA

Γ
=

{
+1 , for Γ = 1 , γµ , γµγ5 , Σ

µν ,

−1 , for Γ = γ5 , Σ
µνγ5 ,

(G.1.22)

BΓB−1 = ηB
Γ
ΓT , ηB

Γ
=

{
+1 , for Γ = 1 , γ5 , γ

µ ,

−1 , for Γ = γµγ5 , Σ
µν , Σµνγ5 ,

(G.1.23)

C−1ΓC = ηC
Γ
ΓT , ηC

Γ
=

{
+1 , for Γ = 1 , γ5 , γ

µγ5 ,

−1 , for Γ = γµ , Σµν , Σµνγ5 .
(G.1.24)

D−1ΓD = ηD
Γ
Γ∗ , ηD

Γ
=

{
+1 , for Γ = 1 , γµγ5 , Σ

µνγ5 ,

−1 , for Γ = γµ , γ5 , Σ
µν .

(G.1.25)

The Lorentz transformation properties of the four-component spinor field can be determined

from those of the two-component spinor fields given in Section 2. The 4 × 4 representation

matrices of the Lorentz group in the (12 , 0)⊕ (0, 12 ) representation are given by

M =


M 0

0 (M−1)†


 = exp

(
− i
4
θµνΣ

µν

)
≃ 14×4 − 1

4 iθµνΣ
µν , (G.1.26)

120When treated as ordinary 4 × 4 matrices A, B, C and D are unitary. But when written in 2 × 2 block

form [noting that δα̇β̇ = (δαβ)
∗ and ǫα̇β̇ ≡ (ǫαβ)∗, as indicated below eqs. (2.19) and (2.23)], the products AA†,

BB†, CC† and DD† are not covariant with respect to the dotted and undotted two-component spinor indices.
Similarly, these matrix products are not covariant with respect to the four-component spinor indices. In practice,
only covariant combinations of A, B, C, D and the four-component spinor fields arise in typical calculations.
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where the infinitesimal forms of M and (M−1)† are given in eqs. (2.99) and (2.100). Two useful

identities that follow from eqs. (G.1.22), (G.1.24) and (G.1.26) are:121

AMA−1 = (M−1)† , (G.1.27)

C−1
MC = (M−1)T . (G.1.28)

The four-component Dirac or Majorana spinor, Ψa , is assigned a lowered spinor index a,

and is defined in terms of two-component spinors by eqs. (G.1.6) or (G.1.18), respectively. Four-

component spinor indices, which will be chosen in general from the beginning of the lower case

Roman alphabet, a, b, c, . . ., can assume integer values 1, 2, 3, 4. Under a Lorentz transformation,

Ψa transforms as

Ψa →Ma
bΨb . (G.1.29)

In analogy with the conventions for two-component spinor indices, we sum implicitly over a pair

of repeated indices consisting of a raised and a lowered spinor index. The transformation law for

the Dirac conjugate spinor (often called the Dirac adjoint spinor), Ψ = Ψ†A, is obtained from

eq. (G.1.29) after employing A† = A and eq. (G.1.27),

Ψ a → Ψ b (M−1)b
a
. (G.1.30)

In particular, ΨΨ ≡ Ψ aΨa is a Lorentz scalar, which justifies the assignment of a raised spinor

index for the Dirac conjugate spinor Ψ a.

It is convenient to introduce barred four-component spinor indices [289] in the transforma-

tion laws of the hermitian-conjugated four-component spinors,122

Ψ
†
ā
→ Ψ

†
b̄
(M†)b̄ā , (G.1.31)

Ψ † ā → [(M−1)†]āb̄Ψ
† b̄ , (G.1.32)

where there is an implicit sum over the repeated lowered and raised barred spinor indices, and

Ψ†
ā ≡ (Ψa)

† , Ψ† ā ≡ (Ψ a)† . (G.1.33)

The spinor index structure of the Dirac conjugation matrix A is then fixed by noting that the

Dirac conjugate spinor, Ψ b ≡ Ψ†
āA

āb, has a raised unbarred spinor index, whereas the hermitian-

conjugated spinor has a lowered barred spinor index.

The charge conjugation matrix can be used to raise and lower four-component spinor in-

dices [289], which we shall employ in defining the spinors Ψa, Ψ† ā, Ψa and Ψ †
ā
,123

Ψa = CabΨ
b , Ψa = (C−1)abΨb , (G.1.34)

Ψ†
ā = Cāb̄Ψ

† b̄ , Ψ† ā = (C−1)āb̄Ψ
†
b̄
, (G.1.35)

121Note that eq. (G.1.28) is a direct consequence of the identities in two-component spinor notation given in
eqs. (2.101) and (2.102).
122Of course, eqs. (G.1.29)–(G.1.32) can also be derived directly from the corresponding two-component spinor

transformation laws of Section 2.
123In contrast to the epsilon symbols of the two-component spinor formalism, here we prefer to explicitly exhibit

the inverse symbols in (C−1)ab and (C−1)āb̄ [cf. footnote 7].
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where

Cāb̄ ≡ (Cab)
∗ , (C−1)āb̄ ≡ [(C−1)ab]∗ . (G.1.36)

Eqs. (G.1.34) and (G.1.35) also apply to Ψ a, Ψa and their hermitian conjugates. In particular,

one can identify the Dirac conjugate spinor with a lowered spinor index (Ψa) as the charge-

conjugated spinor, ΨC ≡ CΨT, and the Dirac spinor with a raised spinor index (Ψa) as the

Dirac conjugate of the charge-conjugated spinor, ΨC = −ΨTC−1. That is,124

ΨC
a ≡ Ψa = CabΨ

b , ΨC a
= Ψa = (C−1)abΨb . (G.1.37)

The rules for raising and lowering spinor indices are consistent with the Lorentz transformation

properties of eqs. (G.1.29)–(G.1.32), as a consequence of eq. (G.1.28). In particular, the condition

for a self-conjugate four-component (Majorana) spinor, Ψa ≡ ΨC
a = Ψa, is Lorentz covariant.

Using eqs. (G.1.15), (G.1.34), (G.1.35), and the definition of the Dirac conjugate spinor, it

then follows that:

Ψa = (A−1)ab̄Ψ
† b̄ , Ψ a = Ψ†

b̄
Ab̄a , (G.1.38)

Ψ †
ā = Ψ b(A−1)bā , Ψ† ā = AābΨb . (G.1.39)

One can check that eqs. (G.1.38) and (G.1.39) are consistent with the Lorentz transformation

properties of eqs. (G.1.29)–(G.1.32), as a consequence of eq. (G.1.27).

In addition to the Lorentz scalar ΨΨ ≡ Ψ aΨa, one can construct two additional independent

Lorentz scalar quantities,125

−ΨTC−1Ψ ≡ −Ψa(C
−1)abΨb = ΨaΨa , (G.1.40)

and its hermitian conjugate,

ΨC ΨT ≡ Ψ aCabΨ
b = Ψ aΨa = Ψ†

āΨ
† ā = (ΨaΨa)

† , (G.1.41)

after using C−1 and C to raise and lower the appropriate spinor indices, respectively. The

penultimate equality in eq. (G.1.41) is a consequence of eq. (G.1.39). The Lorentz invariance of

Ψ aΨa, Ψ
aΨa and Ψ†

āΨ
† ā=Ψ aΨa is manifest and demonstrates the power of the four-component

spinor index notation developed above. After invoking eq. (G.1.37), we note that [analogous

to eq. (2.35)] descending contracted unbarred spinor indices and ascending contracted barred

spinor indices can be suppressed in spinor-index-contracted products. For example,

Ψ aΨa ≡ ΨΨ ΨaΨa = ΨC a
Ψa ≡ ΨCΨ Ψ aΨa = Ψ aΨC

a ≡ ΨΨC , (G.1.42)

where the suppression of barred spinor indices is implicit in the definition of Ψ b ≡ Ψ†
ā
Aāb.

124For a Dirac spinor field defined in eq. (G.1.6), Ψa(x) = ΨCa (x) is given in terms of two-component spinors by

eq. (G.1.10), and Ψa(x) = ΨC a(x) =
(
χα(x) , η†α̇(x)

)
.

125A fourth possible Lorentz scalar, ΨaΨa = (C−1)abCacΨbΨ
c = −ΨcΨ

c = Ψ cΨc, is not independent. Here,
we have used CT = −C and the anticommutativity of the spinors. Equivalently, ΨCΨC = ΨΨ.
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The charge-conjugated spinor can also be written as ΨC
a ≡ Da

c̄Ψ†
c̄ [cf. eq. (G.1.17)]. The

spinor index structure of D (and its inverse) derives from:

Da
c̄ ≡ Cab(AT)bc̄ = CabA

c̄b , (D−1)ā
c ≡ (C∗A)ā

c = Cāb̄A
b̄c , (G.1.43)

where we have used D−1 = D∗. Combining the results of eqs. (G.1.34), (G.1.35), (G.1.38) and

(G.1.39) then yields:

Ψa = Da
c̄Ψ†

c̄
, Ψ†

ā
= (D−1)ā

cΨc , (G.1.44)

Ψ a = −Ψ† c̄(D−1)c̄
a , Ψ† ā = −Ψ cDc

ā . (G.1.45)

In summary, a four-component spinor Ψa and its charge-conjugated spinor ΨC
a possess

a lowered unbarred spinor index, whereas the corresponding Dirac conjugates, Ψ a and ΨC a
,

possess a raised unbarred spinor index. The corresponding hermitian-conjugated spinors exhibit

barred spinor indices (with the height of each spinor index unchanged). Following eqs. (G.1.34)

and (G.1.35), one can also lower or raise a four-component unbarred or barred spinor index by

multiplying by the appropriate matrix C, C−1, C∗ or (C−1)∗, respectively.

The identity matrix, the gamma matrices and their products are denoted collectively by Γ.

The spinor index structure of these matrices and their inverses is given by:

δba , Γa
b , (Γ−1)a

b , (G.1.46)

where the δba are the matrix elements of the identity matrix 1. In this case, the rows are labeled

by the lowered index and the columns are labeled by the raised index. Note that the quantities

Ψ a Γa
bΨb, Ψ

a Γa
bΨb, and Ψ a Γa

bΨ b transform as Lorentz tensors, whose rank is equal to the

number of (suppressed) spacetime indices of Γ.

For the matrices A, B, C, D and their inverses, the spinor index structure is given by:

Aāb , (A−1)ab̄ , B
ab , (B−1)ab , Cab , (C

−1)ab ,Da
b̄ , (D−1)ā

b . (G.1.47)

The corresponding complex-conjugated matrices exhibit the analogous spinor index structure

with unbarred spinor indices changed to barred spinor indices and vice versa. Matrix transpo-

sition interchanges rows and columns. For example,

(ΓT)ab ≡ Γb
a , (AT)ab̄ ≡ Ab̄a , (CT)ab = Cba , (DT)āb ≡ Db

ā . (G.1.48)

Hermitian conjugation is complex conjugation followed by matrix transposition. For example,

(Γ†)āb̄ ≡ (Γb
a)∗ , (A†)āb ≡ (Ab̄a)∗ , (C†)āb̄ = (Cba)

∗ , (D†)ab̄ ≡ (Db
ā)∗ . (G.1.49)

Using the above results, it is straightforward to identify the four-component spinor index struc-

ture of eqs. (G.1.1)–(G.1.28). For example, specifying the four-component spinor indices of

eq. (G.1.28) yields:

(C−1)abMb
cCcd = [(M−1)T]ad ≡ (M−1)d

a
. (G.1.50)
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To complete the spinor index formalism, we introduce hybrid quantities L, L, R and R that

contain an unbarred four-component spinor index and a two-component undotted or dotted

spinor index [290]:

Lβ
b = (12×2 O2×2) , Rβ̇ b = (O2×2 12×2) , (G.1.51)

Lb
β =


12×2

O2×2


 , Rbβ̇ =


O2×2

12×2


 . (G.1.52)

These quantities satisfy:

La
αLα

b = (PL)a
b , Lα

aLa
β = δα

β , (G.1.53)

Raα̇R
α̇ b = (PR)a

b , Rα̇ aRaβ̇ = δα̇β̇ , (G.1.54)

where PL and PR are the chiral projection operators defined in eq. (G.1.7). It then follows that:

Lα
a(PL)a

b = Lα
b , (PL)a

bLb
β = La

β , (G.1.55)

Rα̇ a(PR)a
b = Rα̇ b , (PR)a

bRbβ̇ = Raβ̇ . (G.1.56)

The hybrid quantities L, L, R and R connect objects with four-component and two-

component spinor indices. For the Dirac spinor defined in eq. (G.1.6), it follows that:

χα = Lα
bΨb , ηα = Ψ

b
Lb

α , (G.1.57)

η†α̇ = Rα̇ bΨb , χ†
α̇
= Ψ

b
Rbα̇ . (G.1.58)

The corresponding inverse relations are:

(PL)a
bΨb = La

βχβ , Ψ
a
(PL)a

b = ηβLβ
b , (G.1.59)

(PR)a
bΨb = Raβ̇η

†β̇ , Ψ
a
(PR)a

b = χ†
β̇
Rβ̇ b . (G.1.60)

One can use eqs. (G.1.2), (G.1.4) and (G.1.20) to identify:

σµ
αβ̇

= Lα
a(γµ)a

bRbβ̇ , σµα̇β = Rα̇ a(γµ)a
bLb

β , (G.1.61)

σµνα
β = Lα

a(12Σ
µν)a

bLb
β , σµνα̇β̇ = Rα̇ a(12Σ

µν)a
bRbβ̇ , (G.1.62)

δα
β = −Lαa(γ5)abLbβ , δα̇β̇ = Rα̇ a(γ5)a

bRbβ̇ , (G.1.63)

ǫαβ = Lα
aCabLβ

b , ǫα̇β̇ = Rα̇ aCabR
β̇ b , (G.1.64)

ǫαβ = La
α(C−1)abLb

β , ǫα̇β̇ = Raα̇(C
−1)abRbβ̇ . (G.1.65)

Inverting these results yields:

(γµPL)c
d = Rcα̇σ

µα̇βLβ
d , (γµPR)c

d = Lc
ασµ

αβ̇
Rβ̇d , (G.1.66)

1
2(Σ

µνPL)c
d = Lc

ασµνα
βLβ

d 1
2(Σ

µνPR)c
d = Rcα̇σ

µνα̇
β̇R

β̇d , (G.1.67)

(APL)c
d = Rc

βLβ
d , (APR)c

d = Lcβ̇R
β̇d , (G.1.68)
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(PLC)cd = ǫαβLc
αLd

β , (PRC)cd = ǫα̇β̇Rcα̇Rdβ̇ , (G.1.69)

(C−1PL)
cd = ǫαβLα

cLβ
d , (C−1PR)

cd = ǫα̇β̇R
α̇cRβ̇d . (G.1.70)

Likewise, one can introduce L†, L†, R† and R†, which are hybrid quantities that contain a

barred four-component spinor index and a two-component undotted or dotted spinor index:

(L†)āβ̇ ≡ (Lβ
a)∗ , (R†)āβ ≡ (Rβ̇a)∗ , (G.1.71)

(L†)β̇ ā ≡ (La
β)∗ , (R†)βā ≡ (Raβ̇)

∗ . (G.1.72)

In particular, using eqs. (G.1.59) and (G.1.60), one can relate the quantities L, L, R and R and

their hermitian conjugates:

(L†)āβ̇ = AābRbβ̇ , (R†)āβ = AābLb
β , (G.1.73)

(L†)β̇ ā = Rβ̇b(A−1)bā , (R†)βā = Lβ
b(A−1)bā , (G.1.74)

after employing APL = P †
RA [cf. eq. (G.1.22)] and A† = A. The set of equations analogous to

eqs. (G.1.53)–(G.1.70) involving the corresponding hermitian-conjugated quantities can also be

obtained. However, such formulae will rarely be needed in practice.

Eqs. (G.1.53)–(G.1.70) [and their hermitian conjugates] can be employed to translate any

expression involving two-component spinors into the corresponding expression involving four-

component spinors, and vice versa. With a little practice, both two-component and four-

component spinor indices can be suppressed, which greatly simplifies the manipulation of the

spinor quantities. In particular, by treating the four-component spinors Ψa and ΨC
a as column

vectors and their hermitian (Dirac) conjugates Ψ†
ā and ΨC †

ā
(Ψ a and ΨC a

) as row vectors, all

equations in the four-component spinor formalism have a natural interpretation as products of

matrices and vectors. Henceforth, we shall suppress all four-component spinor indices.

Multiple species of fermions are indicated with a flavor index such as i and j. Dirac fermions

are constructed from two-component fields of opposite charge, χ i and η i (hence the opposite

flavor index heights). Thus, we establish the following conventions for the flavor indices of

four-component Dirac fermions:

Ψi(x) ≡


χαi(x)

η†α̇i (x)


 , Ψi(x) =

(
ηαi(x) , χ† i

α̇ (x)
)
, ΨC i(x) ≡


 η iα(x)

χ†α̇i(x)


 . (G.1.75)

Note that χ† i = (χi)
† and η†i ≡ (ηi)† following the conventions established in Section 3.2. Raised

flavor indices can only be contracted with lowered flavor indices and vice versa. In contrast,

Majorana fermions are neutral so that there is no a priori distinction between raised and lowered

flavor indices. That is,

ΨMi(x) = Ψi
M(x) = ΨC

Mi(x) = ΨC i(x) ≡


 ξαi(x)

ξ†α̇i(x)


 , ΨMi(x) = Ψi

M (x) ≡
(
ξαi (x) , ξ

† i
α̇ (x)

)
.

(G.1.76)
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In this case, the contraction of two repeated flavor indices is allowed in all cases, irrespective of

the heights of the two indices. In the convention adopted in Section 3.2, in which all neutral

left-handed (12 , 0) [right-handed (0, 12 )] fermions have lowered [raised] flavor indices, the height

of the flavor index of a four-component Majorana fermion field is meaningful when multiplied

by a left-handed or right-handed projection operator. Thus, the height of the flavor index for

Majorana fermions can be consistently chosen according to one of the following four cases:

PLΨMi , ΨMiPL , PRΨ i
M , Ψ i

MPR . (G.1.77)

Bilinear covariants are quantities that are quadratic in the spinor fields and transform irre-

ducibly as Lorentz tensors. We first construct a translation table between the two-component

form and the four-component form for the bilinear covariants made up of a pair of Dirac fields.

Using eqs. (G.1.59) and (G.1.60) to convert the four-component spinor fields into the correspond-

ing two-component spinor fields, and employing the appropriate identities involving products of

the hybrid quantities L, L, R and R, the following results are then obtained:

ΨiPLΨj = η iχj , (G.1.78)

ΨiPRΨj = χ† iη†j , (G.1.79)

ΨiγµPLΨj = χ† iσµχj , (G.1.80)

ΨiγµPRΨj = η iσµη†j , (G.1.81)

ΨiΣµνPLΨj = 2 η iσµνχj , (G.1.82)

ΨiΣµνPRΨj = 2χ† iσµνη†j . (G.1.83)

The first two results above follow immediately after using eqs. (G.1.53) and (G.1.54), respec-

tively, and the last four results are a consequence of eqs. (G.1.61) and (G.1.62).

Eqs. (G.1.78)–(G.1.83) apply to both commuting and anticommuting fermion fields.126

These results can then be used to express the standard four-component spinor bilinear covariants

in terms of two-component spinor bilinears:

ΨiΨj = η iχj + χ† iη†j (G.1.84)

Ψiγ5Ψj = −η iχj + χ† iη†j (G.1.85)

ΨiγµΨj = χ† iσµχj + η iσµη†j (G.1.86)

Ψiγµγ5Ψj = −χ† iσµχj + η iσµη†j (G.1.87)

ΨiΣµνΨj = 2(η iσµνχj + χ† iσµνη†j) (G.1.88)

ΨiΣµνγ5Ψj = 2(−η iσµνχj + χ† iσµνη†j) . (G.1.89)

126In the case of anticommuting spinors, it is often useful to apply eq. (2.60) to eqs. (G.1.81), (G.1.86) and
(G.1.87) and rewrite η iσµη†j = −η†jσµη i.
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Additional identities can be derived that involve the charge-conjugated four-component

Dirac fermion fields. As an example, we may use CT = −C and ΨC = −ΨTC−1 to prove that

ΨC
i ΓΨC j = −(−1)AΨ jC ΓTC−1Ψi = −(−1)AηCΓΨ

j ΓΨi , (G.1.90)

where the sign ηC
Γ
is given in eq. (G.1.24). The factor of (−1)A = ±1 [for commuting/anticommut-

ing fermion fields, respectively] arises at the second step above after reversing the order of the

terms by matrix transposition. Identities involving just one charge-conjugated four-component

field can also be easily obtained. For example, using eqs. (G.1.57) and (G.1.70),

ΨC
i PLΨj = −ΨT

iC
−1PLΨj = −Ψaiǫ

αβLα
aLβ

bΨbj = −ǫαβχαiχβj = χiχj . (G.1.91)

In general, if one replaces Ψk with ΨC k in eqs. (G.1.78)–(G.1.89), then in the corresponding

two-component expression one simply interchanges χk ↔ ηk and χ† k ↔ η†k.

Eqs. (G.1.78)–(G.1.89) also apply to four-component Majorana spinors, ΨMi, by setting

χi = ηi ≡ ξi, and χ† i = η†i ≡ ξ† i. This implements the Majorana condition, ΨMi = DΨ∗
Mi, and

imposes additional restrictions on the Majorana bilinear covariants. For example, eqs. (G.1.24)

and (G.1.90) imply that anticommuting Majorana four-component fermions satisfy:127

ΨMiΨMj = ΨMjΨMi , (G.1.92)

ΨMiγ5ΨMj = ΨMjγ5ΨMi , (G.1.93)

ΨMiγ
µΨMj = −ΨMjγ

µΨMi , (G.1.94)

ΨMiγ
µγ5ΨMj = ΨMjγ

µγ5ΨMi , (G.1.95)

ΨMiΣ
µνΨMj = −ΨMjΣ

µνΨMi , (G.1.96)

ΨMiΣ
µνγ5ΨMj = −ΨMjΣ

µνγ5ΨMi . (G.1.97)

By setting i = j, it follows that ΨMγ
µΨM = ΨMΣµνΨM = ΨMΣµνγ5ΨM = 0. One additional

useful result is:

Ψi
Mγ

µPLΨMj = −ΨMjγ
µPRΨ

i
M , (G.1.98)

which follows immediately from eqs. (G.1.94) and (G.1.95). Note that in eq. (G.1.98), the heights

of the flavor indices follow the convention established in eq. (G.1.77).

In the four-component spinor formalism, Fierz identities (first introduced in ref. [291])

consist of relations among products of two bilinear covariants, in which the fermion fields appear

in two different orders. The corresponding two-component spinor Fierz identities are treated in

detail in Appendix B.1. In principle, the latter can be converted into four-component spinor

Fierz identities using the techniques developed in this Appendix. However, it is easier to derive

the four-component spinor Fierz identities directly using the properties of the gamma matrix

algebra [281,288].

127Here, one is free to choose all flavor indices to be in the lowered position [cf. eq. (G.1.76)].
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Instead of eqs. (B.1.5)–(B.1.7), the equivalent identity relevant for four-component spinors is:

δbaδ
d
c = 1

4

[
δdaδ

b
c + (γ5)a

d(γ5)c
b + (γµ)a

d(γµ)c
b − (γµγ5)a

d(γµγ5)c
b + 1

2(Σ
µν)a

d(Σµν)c
b
]
. (G.1.99)

This is the fundamental identity from which many other such identities can be derived

(cf. the Appendix of ref. [285]). One of many possible Fierz identities can be obtained by

multiplying eq. (G.1.99) by Ψ
a
1Ψ2bΨ

c
3Ψ4d = (−1)AΨ

a
1Ψ4dΨ

c
3Ψ2b, where (−1)A = +1 [−1] for

commuting [anticommuting] Dirac, Majorana or Weyl spinors. More generally [281,292,293],

(Ψ1Γ
(k)IΨ2)(Ψ3Γ

(k)
I Ψ4) = (−1)A

5∑

n=1

F kn (Ψ1Γ
(n)JΨ4)(Ψ3Γ

(n)
J Ψ2) , (G.1.100)

where the sum is taken over the 4× 4 matrices, Γ(n) ∈ Γ, which have been ordered as follows,128

Γ = {1 , γµ , Σµν (µ < ν) , γµγ5 , γ5} , (G.1.101)

I, J represent zero, one or two spacetime indices (sums over repeated I and J are implied), and

F =
1

4




1 1 1
2 −1 1

4 −2 0 −2 −4

12 0 −2 0 12

−4 −2 0 −2 4

1 −1 1
2 1 1




. (G.1.102)

For example, taking k = 1 in eq. (G.1.100) yields a result equivalent to eq. (G.1.99):

(Ψ1Ψ2)(Ψ3Ψ4) =
1
4 (−1)

A
[
(Ψ1Ψ4)(Ψ3Ψ2) + (Ψ1γ5Ψ4)(Ψ3γ5Ψ2) + (Ψ1γ

µΨ4)(Ψ3γµΨ2)

−(Ψ1γ
µγ5Ψ4)(Ψ3γµγ5Ψ2) +

1
2 (Ψ1Σ

µνΨ4)(Ψ3ΣµνΨ2)
]
. (G.1.103)

For a comprehensive treatment of all possible four-component spinor Fierz identities, see

ref. [294]. Simple derivations of generalized Fierz identities have also been given in refs. [293,295].

A Mathematica package for performing Fierz transformations is available in ref. [296].

G.2 Free-field four-component fermion Lagrangians

The free-field Lagrangian density in four-component spinor notation can be obtained from the

corresponding two-component fermion Lagrangian by employing the relevant identities for the

bilinear covariants given in eqs. (G.1.78)–(G.1.89). First, consider a collection of free anticom-

muting four-component Majorana fields, ΨMi = ΨC
Mi. The free-field Lagrangian (in terms of

mass eigenstate fields) may be obtained from eq. (3.2.10) by converting to four-component spinor

notation using eqs. (G.1.84) and (G.1.86) with χ = η ≡ ξ, which yields [3]:

L = 1
2 iΨMiγ

µ∂µΨMi − 1
2miΨMiΨMi , (G.2.1)

128The 16 matrices of Γ constitute a complete set that spans the sixteen-dimensional vector space of 4 × 4
matrices.
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where the sum over i is implicit. The corresponding free-field equation for ΨMi is the Dirac

equation:

(iγµ∂µ −m)ΨMi = 0 . (G.2.2)

For simplicity, we focus on a theory of a single four-component Majorana fermion field,

ΨM (x) = ΨC
M (x). One can rewrite the free-field Majorana fermion Lagrangian in terms of a

single Weyl fermion, ΨL(x) ≡ PLΨ(x), where Ψ(x) is a four-component fermion field whose

lower two components (in the chiral representation) are irrelevant for the present discussion.

The Majorana and Weyl fields are related by:

ΨM (x) = ΨL(x) + ΨC
R
(x) , (G.2.3)

where ΨC
R(x) is defined in eq. (G.1.13). The corresponding Dirac conjugate field is given by

ΨM (x) = ΨL(x) + ΨC
R(x), where

ΨL(x) ≡ [PLΨ(x)]†A = Ψ(x)PR , (G.2.4)

ΨC
R(x) ≡ ΨC(x)PL = −ΨT(x)C−1PL = −ΨT

L(x)C
−1 . (G.2.5)

Using the identity:129

ΨC
Rγ

µ∂µΨ
C
R
= −ΨTC−1PLγ

µ∂µPRCΨT = ΨLγ
µ∂µΨL + total divergence , (G.2.6)

the Lagrangian for a single Majorana field can be written in terms of a single Weyl field:130

L = iΨLγ
µ∂µΨL + 1

2m
(
ΨT

L
C−1ΨL −ΨLCΨ

T

L

)
. (G.2.7)

The corresponding free-field equation is

iγµ∂µΨL = mCΨ
T

L , (G.2.8)

where we have used (ΨLC)T = −CΨ
T

L and the anticommutativity of ΨL, ΨL. The general-

ization of eqs. (G.2.3)–(G.2.7) to the case of a multiplet of four-component Majorana fields is

straightforward and is left as an exercise for the reader.

Of course, one could have chosen instead to rewrite the four-component Majorana fermion

Lagrangian in terms of a single Weyl fermion, ΨR(x) ≡ PRΨ(x), in which case the upper two

components (in the chiral representation) of Ψ(x) are not relevant. In this case, the Majorana

and Weyl fields are related by:131

ΨM(x) = ΨR(x) + ΨC
L
(x) , (G.2.9)

129In deriving eq. (G.2.6), we have used eq. (G.1.24) and the anticommutativity of the spinor fields. The total
divergence can be dropped from the Lagrangian, as it does not contribute to the field equations.
130Using eq. (G.1.15), it follows that (ΨTC−1Ψ)† = −ΨA−1C−1 ∗A−1 ∗Ψ T = −ΨC ΨT.
131If Ψ is an unconstrained four-component spinor, then ΨL and ΨR are independent Weyl fields, in which case

ΨL +ΨCR and ΨR +ΨCL are independent self-conjugate fields.
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where ΨC
L (x) is defined in eq. (G.1.12). The corresponding Dirac conjugate field is given by

ΨM (x) = ΨR(x) + ΨC
L (x), where

ΨR(x) ≡ [PRΨ(x)]†A = Ψ(x)PL , (G.2.10)

ΨC
L (x) ≡ ΨC(x)PR = −ΨT(x)C−1PR = −ΨT

R(x)C
−1 . (G.2.11)

The corresponding Weyl fermion Lagrangian is given by eq. (G.2.7) with L replaced by R.

Thus, a Majorana fermion can be represented either by a four-component self-conjugate

field ΨM (x) or by a single Weyl field [either ΨL(x) or ΨR(x)]. Both descriptions are unitarily

equivalent [287,297]; i.e., one can construct a unitary similarity transformation that connects a

Majorana field operator and a Weyl field operator (and vice versa). Of course, this is hardly a

surprise in the two-component spinor formalism, where both the Majorana and Weyl forms of

the Lagrangian correspond to the same field theory of a single two-component spinor field ξα(x).

For m 6= 0, the Weyl Lagrangian given by eq. (G.2.7) possesses no global symmetry, and

hence no conserved charge. In contrast, for m = 0 the Weyl Lagrangian exhibits a U(1) chiral

symmetry. In a theory of massless neutrinos, the U(1) chiral charge of the neutrino is correlated

with its lepton number L, and one is free to use either a Majorana or Weyl description. In

the former, the neutrino is a neutral self-conjugate fermion, which is not an eigenstate of L.

In the latter, ΨL(x) corresponds to the left-handed neutrino and ΨC
R
(x) corresponds to the

right-handed antineutrino, which are eigenstates of L with opposite sign lepton numbers. No

experimental observable can distinguish between these two descriptions.

We now consider a collection of free anticommuting four-component Dirac fields, Ψi. The

free-field Lagrangian (in terms of mass eigenstate fields) may be obtained from eq. (3.2.34) by

converting to four-component spinor notation. We then obtain the standard textbook result:

L = iΨ
i
γµ∂µΨi −miΨ

i
Ψi . (G.2.12)

By writing Ψ = ΨL +ΨR, we see that the Lagrangian for a single Dirac field can be written in

terms of two Weyl fields:

L = iΨLγ
µ∂µΨL + iΨRγ

µ∂µΨR −m
(
ΨLΨR +ΨRΨL

)
. (G.2.13)

The corresponding free-field equations are:

iγµ∂µΨL = mΨR , iγµ∂µΨR = mΨL . (G.2.14)

Summing these two equations yields the Dirac equation, (iγµ∂µ −m)Ψ = 0.

As a pedagogical example in which both Dirac and Majorana mass terms are present, we

perform the diagonalization of the neutrino mass matrix in a one-generation seesaw model132 us-

ing the four-component spinor formalism. Following Appendix A of ref. [298], we first introduce

132In Appendix J.2, the seesaw model of neutrino masses is introduced using the two-component spinor formalism.
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a four-component anticommuting neutrino field νD, and the corresponding Weyl fields,

νL ≡ PLνD , νCL ≡ PLνCD , νR ≡ PRνD , and νCR ≡ PRνCD . (G.2.15)

Note that eqs. (G.1.12) and (G.2.5) imply that the anticommuting Weyl fermion fields satisfy:

νCRν
C
L = νRνL , νCL ν

C
R = νLνR . (G.2.16)

A Dirac mass term for the neutrinos in the one-generation seesaw model couples νL and νCL

(and by hermiticity of the Lagrangian, νCR and νR), and can be written equivalently as:

mD(ν
T

LC
−1νCL + νTR C

−1νCR ) = −mD(νCRν
C
L + νCL ν

C
R ) = −mD(νRνL + νLνR) = −mDνDνD ,

(G.2.17)

after making use of eq. (G.2.16). The Majorana mass term for the neutrinos in the one-generation

seesaw model couples νCL to itself (and by hermiticity of the Lagrangian, νR to itself), and can

be written equivalently as:

1
2M(νC T

L C−1νCL + νTR C
−1νR) = −1

2M(νRν
C
L + νCL νR) . (G.2.18)

We shall define the phases of the neutrino fields such that the parameters mD and M are real

and non-negative.

Thus, the mass terms of the one-generation neutrino seesaw Lagrangian, given in eq. (J.2.18)

in terms of two-component fermion fields, translates in four-component spinor notation to

Lmass = −1
2mD(νLνR + νRνL + νCL ν

C
R + νCRν

C
L )− 1

2M(νRν
C
L + νCL νR)

= −1
2

(
νCR νR

)

 0 mD

mD M




 νL

νCL


− 1

2

(
νL νCL

)

 0 mD

mD M




νCR

νR




= 1
2

(
νTL νC T

L

)
C−1


 0 mD

mD M




 νL

νCL


+ h.c. , (G.2.19)

where we have used eq. (G.2.16) to write the first line of eq. (G.2.19) in a symmetrical fashion

and eqs. (G.1.12) and (G.2.5) to obtain the final form above. Note that if M = 0, then one can

write Lmass = −mDνDνD and identify νD as a four-component massive Dirac neutrino.

The Takagi diagonalization of the neutrino mass matrix yields two mass eigenstates, which

we designate by νℓ and νh, where ℓ and h stand for light and heavy, respectively. The mass

eigenstate Weyl neutrino fields are related to the interaction eigenstate Weyl neutrino fields via


 νL

νCL


 = U


 PLνℓ

PLν
C
h


 , (G.2.20)
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where U is a 2× 2 unitary matrix that is chosen such that

UT


 0 mD

mD M


 U =


 mνℓ

0

0 mνh


 . (G.2.21)

For M 6= 0, the neutrino mass eigenstates are not Dirac fermions. In the seesaw limit of

M ≫ mD, the corresponding neutrino masses are mνℓ
≃ m2

D/M and mνh
≃M +m2

D/M , with

mνℓ
≪ mνh

. In terms of the mass eigenstates, the neutrino mass Lagrangian is:

Lmass =
1
2

[
mνℓ

νT
ℓ
C−1PLνℓ +mνh

νC T

h
C−1PLν

C
h

]
+ h.c. , (G.2.22)

after using eq. (G.1.24). We now define four-component self-conjugate Majorana neutrino fields,

denoted by Ψℓ and Ψh respectively, according to eqs. (G.2.3) and (G.2.9),

Ψℓ ≡ PLνℓ + PR Cν
T

ℓ
, Ψℓ ≡ νℓPR − νTℓ C

−1PL , (G.2.23)

Ψh ≡ PRνh + PLCν
T

h
, Ψh ≡ νhPL − νThC

−1PR . (G.2.24)

Then, eq. (G.2.22) reduces to the expected form:

Lmass = −1
2

[
mνℓ

ΨℓΨℓ +mνh
ΨhΨh

]
. (G.2.25)

A comparison with the analysis of the neutrino mass matrix given in Appendix J.2 exhibits the

power and the simplicity of the two-component spinor formalism, as compared to the rather

awkward four-component spinor analysis presented above.

G.3 Gamma matrices and spinors in spacetimes of diverse dimensions and
signatures

The translation from two-component to four-component spinor notation given in Appendix G.1

is specific to 3 + 1 spacetime dimensions. In d = 4 Euclidean space dimensions (independently

of the choice of convention for the Minkowski metric), the Dirac gamma matrix algebra is

defined by {γµE , γνE} = 2δµν1, where δµν ≡ diag(1 , 1 , 1 , 1). Using eqs. (A.23) and (G.1.2), the

Euclidean gamma matrices (defined for µ, ν = 1 , . . . , 4) are hermitian and given by γkE ≡ −iγk

(k = 1, 2, 3), γ4E ≡ γ0 and γ5E ≡ −γ1Eγ2Eγ3Eγ4E = γ5 (e.g, see Appendix A.1.2 of ref. [299]).133

The four-dimensional reducible (Dirac) spinor representation corresponds to the (12 , 0) ⊗ (0, 12 )

representation of SO(4), although the (12 , 0) and (0, 12 ) representations are independent pseudo-

real representations of SO(4) not related by hermitian conjugation, as noted at the end of

Section 2. A complete treatment of Euclidean two-component spinors can be found in ref. [128].

133One can also choose to define the Euclidean Dirac algebra by {γµE , γνE} = −2δµν1 (simply by multiplying
all gamma matrices by a factor of i), in which case the Euclidean gamma matrices, γkE ≡ γk and γ4

E ≡ iγ0 are
anti-hermitian, and γ5E ≡ −γ1

Eγ
2
Eγ

3
Eγ

4
E = γ5 is hermitian (e.g., see ref. [300]). These conventions arise more

naturally in the general treatment of gamma matrices in d spacetime dimensions as defined in eq. (G.3.1). The
corresponding Euclidean sigma matrices would then be defined as in footnote 88.
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The Euclidean space formalism for fermions is necessary for a rigorous definition of the

path integral in quantum field theory [121, 122]. Using the Euclidean Dirac gamma matrices

introduced above, one can express the four-component Dirac Lagrangian directly in Euclidean

space [220]. Carrying out the same procedure for the four-component Majorana Lagrangian is

problematical. Because the (12 , 0) and (0, 12) representations of SO(4) are not hermitian conju-

gates of each other, a self-conjugate Euclidean Majorana fermion does not exist. Nevertheless, it

is possible to devise a continuous Wick rotation from Minkowski spacetime to Euclidean space

for Dirac, Majorana and Weyl spinor fields and the gamma matrices. In particular, one can

construct a non-hermitian Euclidean action for a single Majorana or Weyl field whose Green

functions are related to the usual Minkowski space Green functions by analytic continuation and

a Wick rotation of the spinor fields. Further details can be found in refs. [126,127].134

The two-component spinor technology of this review is specifically designed to treat spinors

in three space and one time dimension. In theories of d spacetime dimensions (where d is any

positive integer), more general techniques are required. By considering spinors in this more

general setting, one gains insight into the concepts of Majorana, Weyl and Dirac spinors and

their distinguishing features.

The mathematics of spinors [130] in spacetimes of dimension d = t + s (where t is the

number of time dimensions and s is the number of space dimensions) is most easily treated by

introducing higher-dimensional analogues of the gamma matrices, Γµ, which satisfy the Clifford

algebra [90,91,131–136,140–142,289,301],135

{Γµ , Γν} = 2ηµν1 , ηµν = diag(+ + · · ·+︸ ︷︷ ︸
t

, −− · · · −︸ ︷︷ ︸
s

) , (G.3.1)

where the identity matrix 1 and the Γµ are 2[d/2] × 2[d/2] matrices, and [d/2] is the integer part

of d/2,

[d/2] ≡
{
d/2 , for d even,

(d− 1)/2 , for d odd.
(G.3.2)

The choice of (s, t) denotes the signature of the spacetime. One can choose Γµ † = Γµ for

µ = 1, 2, . . . , t and Γµ † = −Γµ for µ = t+ 1 , t + 2 , . . . , d. We identify 1
2Σ

µν ≡ 1
4 i [Γ

µ , Γν ] as

the generators of SO(s, t) in the spinor representation. Next, we introduce the [d/2]-component

(complex) Dirac spinor Ψ and its Dirac conjugate Ψ ≡ Ψ†A, where A = Γ1Γ2 · · ·Γt is a unitary

matrix that satisfies:136

AΓµA−1 = (−1)t+1Γµ † , A† = (−1)t(t−1)/2A . (G.3.3)

134Previous attempts in the literature to define Euclidean Majorana field theories can be found in ref. [125].
135This includes the Euclidean case [139] corresponding to t = 0 and s = d [cf. footnote 133], and the Minkowski

case corresponding to t = 1 and s = d− 1.
136In d-dimensional Euclidean space (where t = 0), Γµ † = −Γµ for all µ = 1, 2, . . . , d. As a result, we may

choose A = 1, in which case Ψ = Ψ†.
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One can now build SO(s, t)-covariant bilinears, ΨΓΨ, where Γ is a product of gamma matrices.

Biquadratic spinor Fierz identities involving quantities such as (Ψ1Γ
IΨ2)(Ψ3ΓIΨ4) can also be

derived [302], where the ΓI =
{
1 , Γµ,Γµν (µ < ν) , ΓµΓνΓλ (µ < ν < λ) , . . . ,Γ1Γ2 · · ·Γ2[d/2]

}

are a complete set of 22[d/2] linearly independent matrices [which generalizes eq. (G.1.101)].

If d is even, one can also introduce the d-dimensional analogue of γ5 by defining137

Γd+1 ≡ i(s−t)/2 Γ1Γ2 · · ·Γd , (G.3.4)

which is hermitian and satisfies (Γd+1)
2 = 1 and {Γµ , Γd+1} = 0. In the case of even-dimensional

spacetimes, there are two possible choices for the charge-conjugated spinor ΨC ,138

ΨC = B−1
η Ψ∗ , where η = ±1 , (G.3.5)

and the Bη are unitary matrices that satisfy:

BηΓ
µB−1

η = ηΓµ ∗ , η = ±1 . (G.3.6)

For even d, a convenient choice is B+ = B−Γd+1 [135].

If d is odd with signature (s, t), then the 2(d−1)/2 × 2(d−1)/2 gamma matrices Γµ (µ =

1, 2, . . . , d) consist of
{
Γ1,Γ2, . . . ,Γd−1,±iΓd+1

}
of the (d − 1)-dimensional theory of signature

(s− 1, t). By assumption, µ = d is a space index, so that Γd ≡ ±iΓd+1 is anti-hermitian. In the

case of odd d, only one sign choice for η, namely η = (−1)(s−t+1)/2, is consistent with eq. (G.3.6)

as applied to Γd.139 Consequently, only one definition of the charge-conjugated spinor is viable,

namely ΨC = B−1
− Ψ∗ for s− t = 1, 5 (mod 8) and ΨC = B−1

+ Ψ∗ for s− t = 3, 7 (mod 8).

One important property of the Bη is [131,134,140,141]:

B∗
ηBη = εη , εη = ±1 , (G.3.7)

for η = ±1 in even-dimensional spacetimes and η = (−1)(s−t+1)/2 in odd-dimensional spacetimes.

In particular [134],140

ε− =

{
+1 , for s− t = 0, 1, 2 (mod 8) ,

−1 , for s− t = 4, 5, 6 (mod 8) ,
ε+ =

{
+1 , for s− t = 0, 6, 7 (mod 8) ,

−1 , for s− t = 2, 3, 4 (mod 8) .

(G.3.8)

Using the charge-conjugated spinor defined in eq. (G.3.5), one can define a self-conjugate

spinor, ΨC = Ψ. Two cases arise depending on the sign of η [134,140–142],

Majorana spinor: Ψ = B−1
− Ψ∗ , (G.3.9)

pseudo-Majorana spinor: Ψ = B−1
+ Ψ∗ . (G.3.10)

137For t = 1 and d even, one traditionally takes µ = 0, 1, 2, . . . , d− 1 (where 0 is the time index), in which case,
Γd+1 ≡ i(d−2)/2 Γ0Γ1 · · ·Γd−1.
138In four-dimensional Minkowski spacetime, we identify D = B−1

− [cf. eq. (G.1.17)] and γ5D = B−1
+ .

139The two sign choices for Γd correspond to two inequivalent representations of the Clifford algebra [eq. (G.3.1)]
for d odd. Nevertheless, the corresponding Σµν yield equivalent spinor representations of SO(s, t).
140For d even, one can use B+ = B−Γd+1 and BηΓd+1B

−1
η = (−1)(s−t)/2Γ∗

d+1 to derive ε+ = (−1)(s−t)/2 ε−.
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Due to the reality conditions [eqs. (G.3.9) and (G.3.10)], the (pseudo-)Majorana spinor possesses

2[d/2] real degrees of freedom. Using eq. (G.3.7), one immediately sees that eqs. (G.3.9) and

(G.3.10) are respectively consistent if and only if εη = +1.141 The possible existence of Majorana

[pseudo-Majorana] spinors in d-dimensional spacetime depends on the choice of s− t such that

ε− = +1 [ε+ = +1]. Using eq. (G.3.8), it follows that Majorana spinors can only exist in

spacetimes where s − t = 0, 1, 2 (mod 8), and pseudo-Majorana can only exist in spacetimes

where s−t = 0, 6, 7 (mod 8).142 In particular, a Majorana spinor cannot exist in four-dimensional

Euclidean space.

Given a choice of sign for η = ±1, one can define a corresponding charge conjugation matrix

Cη, which is unitary and is defined by143

Cη ≡ BT

η A , where CηΓ
µC−1

η = η(−1)t+1ΓµT . (G.3.11)

Eq. (G.3.5) then yields ΨC = C∗
η Ψ

T
. The unitary matrices A, Bη and Cη satisfy the following

useful identities [134,140]:

BT

η = εηBη , CT

η = εηη
t(−1)t(t−1)/2Cη , A∗Bη = ηtBηA , ATCη = ηtCηA

−1 .

(G.3.12)

In the case of even d, one can define left and right-handed chiral projection operators:

PL ≡ 1
2(1− Γd+1) , PR ≡ 1

2 (1 + Γd+1) , (G.3.13)

and introduce Weyl fermions, ΨL and ΨR, which satisfy Γd+1ΨR,L = ±ΨR,L. Equivalently,

ΨL ≡ PLΨ , ΨR ≡ PRΨ , (G.3.14)

so that ΨL (and likewise ΨR) possesses 2(d−2)/2 complex degrees of freedom. It is possible

for a spinor to be simultaneously a (pseudo) Majorana and a Weyl spinor if the spinor and

its charge conjugate have the same chirality, in which case BηΓd+1B
−1
η = Γ∗

d+1 (for even d).

The latter condition holds when is−t = 1 or equivalently s − t = 0 (mod 4). Combining this

requirement with the condition for the existence of a (pseudo) Majorana spinor, it follows that a

(pseudo) Majorana-Weyl spinor, which possesses 2(d−2)/2 real degrees of freedom, can only exist

in spacetimes where s− t = 0 (mod 8). For further details, see refs. [91, 131–134,140–142,289].

As in Section 3.2, one can also consider a multiplet of fermions Ψi that transforms under a

complex, real or pseudo-real representation R of the flavor group G as

Ψi → (DR)i
jΨj , DR = exp(−iθaT a

R) , i, j = 1, 2, . . . , dR , (G.3.15)

141If εη = −1 then one can introduce a generalized reality condition [cf. eq. (G.3.16)], which constrains the
structure of a multiplet of Dirac fermions that transforms under a pseudo-real representation of the flavor group. In
this case, the corresponding (generalized) self-conjugate spinors are called symplectic (pseudo-)Majorana spinors,
as discussed below eq. (G.3.20).
142As shown in ref. [134,140], no SO(s, t)-invariant mass term is allowed for a pseudo-Majorana spinor.
143In four-dimensional Minkowski spacetime, we identify C = (CT

−)
−1 = C∗

− [cf. eq. (G.1.10)] and B = C+

[cf. eq. (G.1.19)]. In this case, one cannot use C+ to consistently define a self-conjugate spinor, as the corresponding
ε+ = −1.
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where DR is unitary and the corresponding generators T a
R are hermitian. The dimension of R

is denoted by dR, which must be even in the pseudo-real case. In both the real and pseudo-

real cases, one can also impose a reality condition that generalizes the Majorana conditions of

eqs. (G.3.9) and (G.3.10),

(Ψi)
∗ ≡ Ψ∗ i =W ijBηΨj , (G.3.16)

where W is a unitary matrix and Bη acts on the (suppressed) spinor indices of Ψj. Additional

constraints on the form of W are obtained as follows. First, taking the complex conjugate of

eq. (G.3.16) and inserting the result back into the same equation, it follows that

W ∗W = εη1 , (G.3.17)

after making use of eq. (G.3.7). Second, eq. (G.3.16) must hold true if Ψ is replaced by DRΨ

on both sides of the equation, in order to be compatible with the flavor symmetry group trans-

formation law [eq. (G.3.15)]. This latter requirement combined with eq. (G.3.17) yields:

DR = εηW
∗D∗

RW =W−1D∗
RW . (G.3.18)

Eq. (G.3.18) can be expressed in terms of the flavor group generators,

iT a
R =W−1(iT a

R)∗W . (G.3.19)

Comparing with eqs. (E.1.4)–(E.1.6), we conclude that the unitary matrix W satisfies:

W = εηW
T , εη =

{
+1 , R is a real representation ,

−1 , R is a pseudo-real representation .
(G.3.20)

When R is a real representation, W =WT, and a basis for the flavor group generators can

be chosen such that W = 1 [cf. eq. (E.1.7)], in which case DR is a real orthogonal matrix. Since

εη = +1, eq. (G.3.16) yields (pseudo-)Majorana spinors (depending on the sign of η) as defined

previously in eqs. (G.3.9) and (G.3.10).

When R is a pseudo-real representation, W = −WT, and a basis for the flavor group

generators can be chosen such thatW = J ≡ diag
{(

0 1
−1 0

)
,
(

0 1
−1 0

)
, · · · ,

(
0 1

−1 0

)}
is a dR×dR

matrix, where dR is even [cf. eq. (E.1.8)]. In this case, DT

RJDR = J , which implies that DR is

a unitary symplectic matrix [136]. Moreover, εη = −1, which was incompatible with the reality

conditions of eqs. (G.3.9) and (G.3.10), but is compatible with the generalized reality condition

of eq. (G.3.16).

Therefore, we define symplectic (pseudo-)Majorana spinors [134, 136, 137, 142, 289] to be

spinors that transform as a pseudo-real representation under some flavor group and satisfy the

generalized reality condition of eq. (G.3.16), where W is a unitary antisymmetric matrix, de-

pending on the choice of η = ±1 (with η = −1 yielding the “pseudo” designation). As suggested

by eqs. (3.2.35)–(3.2.40), 2dR symplectic (pseudo-)Majorana spinors are equivalent to dR Dirac
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fermions. The possible existence of symplectic (pseudo-)Majorana spinors in a d-dimensional

spacetime is governed by eq. (G.3.8). Requiring that εη = −1 implies that symplectic Majorana

spinors exist in spacetimes where s − t = 4, 5, 6 (mod 8), and symplectic pseudo-Majorana

spinors exist in spacetimes where s− t = 2, 3, 4 (mod 8). Using this nomenclature, the fermions

described by the four-dimensional Minkowski space Lagrangian given in eq. (3.2.35) are sym-

plectic pseudo-Majorana spinors.

G.4 Four-component spinor wave functions

In four-dimensional Minkowski space, the free four-component Majorana field can be expanded

in a Fourier series; each positive [negative] frequency mode is multiplied by a commuting spinor

wave function u(~p, s) [v(~p, s)] as in eq. (3.2.11),144

ΨMi(x) =
∑

s

∫
d3~p

(2π)3/2(2Eip)1/2

[
u(~p, s)ai(~p, s)e

−ip·x + v(~p, s)a†i (~p, s)e
ip·x
]
, (G.4.1)

where Eip ≡ (|~p|2 + m2
i )

1/2, and the creation operators a†i and the annihilation operators ai

satisfy anticommutation relations:

{ai(~p, s), a†j(~p ′, s′)} = δ3(~p− ~p ′)δss′δij , (G.4.2)

with all other anticommutation relations vanishing. We employ covariant normalization of the

one-particle states given by eq. (3.2.13). It then follows that

〈0|ΨM(x) |~p, s〉 = u(~p, s)e−ip·x , 〈0|ΨM (x) |~p, s〉 = v̄(~p, s)e−ip·x , (G.4.3)

〈~p, s|ΨM (x) |0〉 = ū(~p, s)eip·x , 〈~p, s|ΨM (x) |0〉 = v(~p, s)eip·x . (G.4.4)

These results are the four-component spinor versions of eqs. (3.1.7) and (3.1.8).

Likewise, the free Dirac field can be expanded in a Fourier series,

Ψi(x) =
∑

s

∫
d3~p

(2π)3/2(2Eip)1/2

[
u(~p, s)ai(~p, s)e

−ip·x + v(~p, s)b†i (~p, s)e
ip·x
]
, (G.4.5)

where the creation operators a†i and b
†
i and the annihilation operators ai and bi satisfy anticom-

mutation relations:

{ai(~p, s), a†j(~p ′, s′)} = δ3(~p− ~p ′)δss′δij , (G.4.6)

{bi(~p, s), b†j(~p ′, s′)} = δ3(~p− ~p ′)δss′δij , (G.4.7)

with all other anticommutation relations vanishing. We employ covariant normalization of the

fermion (F ) and antifermion (F ) one-particle states given by eq. (3.2.22). It then follows that

〈0|Ψ(x) |~p, s;F 〉 = u(~p, s)e−ip·x , 〈0|Ψ(x)
∣∣~p, s;F

〉
= v̄(~p, s)e−ip·x , (G.4.8)

〈~p, s;F |Ψ(x) |0〉 = ū(~p, s)eip·x ,
〈
~p, s;F

∣∣Ψ(x) |0〉 = v(~p, s)eip·x , (G.4.9)

144Some subtleties arise in the choice of relative phases of the creation and annihilation operators, which are
related to the C, CP and CPT transformation properties of the Majorana field. For further details, see ref. [303].
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and the four other single-particle matrix elements vanish. These results are the four-component

spinor versions of eqs. (3.2.23)–(3.2.26). The Fourier expansion of the charge-conjugated free

Dirac field ΨC
i (x) = CΨ

T

i (x) is given by:

ΨC
i (x) =

∑

s

∫
d3~p

(2π)3/2(2Eip)1/2

[
u(~p, s)bi(~p, s)e

−ip·x + v(~p, s)a†i (~p, s)e
ip·x
]
, (G.4.10)

where we have used eq. (G.4.13). That is, the charge conjugation transformation interchanges

the annihilation and creation operators, ai ↔ bi and a
†
i ↔ b†i . Thus, if ΨC(x) = Ψ(x), then we

must identify a = b and a† = b†, corresponding to the free Majorana field given in eq. (G.4.1).

The two-component spinor momentum space wave functions are related to the traditional

four-component spinor wave functions according to:

u(~p, s) =



xα(~p, s)

y†α̇(~p, s)


 , ū(~p, s) = (yα(~p, s), x†α̇(~p, s)) , (G.4.11)

v(~p, s) =



yα(~p, s)

x†α̇(~p, s)


 , v̄(~p, s) = (xα(~p, s), y†α̇(~p, s)) , (G.4.12)

where the u and v-spinors are related by

v(~p, s) = Cū(~p, s)T , u(~p, s) = Cv̄(~p, s)T , (G.4.13)

v̄(~p, s) = −u(~p, s)TC−1 , ū(~p, s) = −v(~p, s)TC−1 . (G.4.14)

The spin quantum number takes on values s = ±1
2 , and refers either to the component of

the spin as measured in the rest frame with respect to a fixed axis or to the helicity (as discussed

in Section 3.1 and Appendix C). Note that the u and v-spinors also satisfy:

v(~p, s) = −2sγ5u(~p,−s) , u(~p, s) = 2sγ5v(~p,−s) , (G.4.15)

which follows from eq. (3.1.23). Explicit forms for the four-component spinor wave functions in

the chiral representation can be obtained using eqs. (3.1.19)–(3.1.22), where χs(ŝ) is given in

eq. (C.1.11). For helicity spinors, further simplifications result by employing eqs. (C.3.4)–(C.3.7).

One can check that u and v satisfy the Dirac equations

(/p−m)u(~p, s) = (/p +m) v(~p, s) = 0 , (G.4.16)

ū(~p, s) (/p −m) = v̄(~p, s) (/p+m) = 0 , (G.4.17)

corresponding to eqs. (3.1.9)–(3.1.12), and

(2sγ5/S − 1)u(~p, s) = (2sγ5/S − 1) v(~p, s) = 0 , (G.4.18)

ū(~p, s) (2sγ5/S − 1) = v̄(~p, s) (2sγ5/S − 1) = 0 , (G.4.19)
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corresponding to eqs. (3.1.24)–(3.1.27), where the spin vector Sµ is defined in eq. (3.1.15).145

For massive fermions, eqs. (3.1.46)–(3.1.49) correspond to

u(~p, s)ū(~p, s) = 1
2(1 + 2sγ5/S) (/p +m) , (G.4.20)

v(~p, s)v̄(~p, s) = 1
2(1 + 2sγ5/S) (/p −m) . (G.4.21)

To apply the above formulae to the massless case we must employ helicity states, where s

is replaced by the helicity quantum number λ, and Sµ is defined by eq. (3.1.16). In particular,

in the m → 0 limit, Sµ = pµ/m +O(m/E). Inserting this result in eqs. (G.4.18) and (G.4.19)

and using the Dirac equations, it follows that the massless helicity spinors are eigenstates of γ5,

γ5u(~p, λ) = 2λu(~p, λ) , γ5v(~p, λ) = −2λv(~p, λ) . (G.4.22)

Combining these results with eq. (G.4.15) [with s replaced by λ] yields:

v(p, λ) = −2λγ5u(p,−λ) = u(p,−λ) , λ = ±1
2 , (G.4.23)

and we see that the massless u and v spinors of opposite helicity are the same.

Applying the above m→ 0 limiting procedure to eqs. (G.4.20) and (G.4.21) and using the

mass-shell condition (/p/p = p2 = m2), one obtains the massless helicity projection operators

corresponding to eqs. (3.1.54)–(3.1.57):

u(~p, λ)ū(~p, λ) = 1
2(1 + 2λγ5) /p , (G.4.24)

v(~p, λ)v̄(~p, λ) = 1
2(1− 2λγ5) /p . (G.4.25)

Summing over the spin degree of freedom, we obtain the spin-sum identities corresponding

to eqs. (3.1.58)–(3.1.61), ∑

s

u(~p, s)ū(~p, s) = /p+m, (G.4.26)

∑

s

v(~p, s)v̄(~p, s) = /p−m, (G.4.27)

∑

s

u(~p, s)vT(~p, s) = (/p+m)CT , (G.4.28)

∑

s

ūT(~p, s)v̄(~p, s) = C−1(/p−m) , (G.4.29)

∑

s

v̄T(~p, s)ū(~p, s) = C−1(/p+m) , (G.4.30)

∑

s

v(~p, s)uT(~p, s) = (/p−m)CT , (G.4.31)

which are valid for both the massive case and the massless m→ 0 limit.
145We use the standard Feynman slash notation: /p ≡ γµp

µ and /S ≡ γµS
µ.
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As previously noted, the results for the bilinear covariants obtained in eqs. (G.1.78)–(G.1.89)

can also be applied to expressions involving the commuting spinor wave functions. Various

relations among the possible bilinear covariants can be established by using eqs. (G.4.13) and

(G.4.14). As an example, for Γ = 1 , γ5 , γ
µ , γµγ5 , Σ

µν , Σµνγ5,

ū(~p1, s1)Γv(~p2, s2) = −v(~p1, s1)
TC−1ΓCū(~p2, s2)

T = −ηC
Γ
ū(~p2, s2)Γv(~p1, s1) , (G.4.32)

ū(~p1, s1)Γu(~p2, s2) = −v(~p1, s1)
TC−1ΓCv̄(~p2, s2)

T = −ηC
Γ
v̄(~p2, s2)Γv(~p1, s1) , (G.4.33)

where the sign ηC
Γ

[defined in eq. (G.1.24)] arises after taking the transpose and applying

eq. (G.1.24). In particular, the (commuting) u and v spinors satisfy the following relations:

ū(~p1, s1)PLv(~p2, s2) = −ū(~p2, s2)PLv(~p1, s1) , (G.4.34)

ū(~p1, s1)PRv(~p2, s2) = −ū(~p2, s2)PRv(~p1, s1) , (G.4.35)

ū(~p1, s1)γ
µPLv(~p2, s2) = ū(~p2, s2)γ

µPRv(~p1, s1) , (G.4.36)

ū(~p1, s1)γ
µPRv(~p2, s2) = ū(~p2, s2)γ

µPLv(~p1, s1) , (G.4.37)

and four similar relations obtained by interchanging v(~p2, s2)↔ u(~p2, s2).

G.5 Feynman rules for four-component fermions

We now illustrate some basic applications of the above formalism. In particular, we shall estab-

lish a set of Feynman rules for four-component fermions that treat both Dirac and Majorana

fermions on the same footing. These rules generalize the standard Feynman rules for four-

component Dirac fermions found in most quantum field theory textbooks. Two advantages of

the rules presented here are: (i) no factors of the charge conjugation matrix C are required for

fermion interaction vertices and propagators, and (ii) the relative sign between different diagrams

corresponding to the same physical process is simply determined. Our rules have been obtained

by translating our two-component fermion Feynman rules into the four-component spinor lan-

guage. The resulting Feynman rules for four-component Majorana fermions are equivalent to

the set of rules independently obtained in ref. [304] (see also refs. [305,306]).

Consider first the Feynman rule for the four-component fermion propagator. Virtual Dirac

fermion lines can either correspond to Ψ or ΨC . Here, there is no ambiguity in the propagator

Feynman rule, since for free Dirac fermion fields,146

〈0|T [Ψa(x)Ψ
b(y)] |0〉 = 〈0|T [ΨC

a (x)Ψ
C b

(y)] |0〉 , (G.5.1)

so that the Feynman rules for the propagator of a Ψ and ΨC line, exhibited in Fig. G.5.1, are

identical. The same rule also applies to a four-component Majorana fermion.

146In deriving eq. (G.5.1), we have used CΨa C−1 = ηcΨ
C
a and CΨ a C−1 = η∗c ΨC

a, where C is the charge
conjugation operator that acts on the quantum Hilbert space and ηc is a convention-dependent phase factor [36,38].
Note that C is a unitary operator and C |0〉 = |0〉 in the free-field vacuum.
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p

ab

i(/p+m)a
b

p2 −m2 + iǫ

Figure G.5.1: Feynman rule for the propagator of a four-component fermion with mass m.
The same rule applies to a Majorana, Dirac and charge-conjugated Dirac fermion. The four-
component spinor labels a and b are specified.

Using eq. (G.1.2), the four-component fermion propagator Feynman rule can be expressed

as a partitioned matrix of 2× 2 blocks,

p

=
a b





 =

i

p2 −m2 + iǫ



mδα

β p·σαβ̇

p·σα̇β mδα̇β̇


 , (G.5.2)

where a and b are four-component spinor indices. That is, eq. (G.5.2) is a partitioned matrix

whose blocks consist of two-component fermion propagators defined in Fig. 4.2.1, with the

undotted and dotted α [β] indices on the left [right] and with the momentum flowing from right

to left.

The derivation of the four-component Dirac fermion propagator is treated in most modern

textbooks of quantum field theory (see, e.g., ref. [114]). Here, we briefly sketch the path integral

derivation of the four-component fermion propagator by exploiting the path integral treatment

of the two-component fermion propagators outlined in Appendix F. Consider a single massive

Dirac fermion Ψ(x) coupled to an anticommuting four-component Dirac fermionic source term

Jψ(x) ≡


Jηα(x)

J†α̇
χ (x)


 . (G.5.3)

The corresponding action [eq. (F.2)] in four-component notation is given by

S =

∫
d4x (L + JψΨ+Ψ Jψ) =

∫
d4x

[
Ψ(i/∂ −m)Ψ + JψΨ+Ψ Jψ

]
. (G.5.4)

Introducing the momentum space Fourier coefficients:

Ψ(x) =

∫
d4p

(2π)4
e−ip·xΨ̂(p) , Jψ(x) =

∫
d4p

(2π)4
e−ip·xĴψ(p) , (G.5.5)

we can identify the following four-component quantities with matrices of two-component quan-

tities given in eqs. (F.7) and (F.27):

Ψ̂(p) = A−1Ωc(p) , Ĵψ(p) = Xc(p) , /p−m =M(p)A , (G.5.6)

where A is the Dirac conjugation matrix defined in eqs. (G.1.9) and (G.1.11). Using the results

of Appendix F, one easily derives:

〈0|T (Ψ(x1)Ψ(x2))|0〉 =
(
−i

−→
δ

δJψ(x1)

)
W [J, J ]

(
−i

←−
δ

δJψ(x2)

)∣∣∣∣∣
Jψ=Jψ=0

, (G.5.7)
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where

W [Jψ , Jψ] = exp

{
−i
∫

d4p

(2π)4
Ĵψ(p)

/p+m

p2 −m2
Ĵψ(p)

}
. (G.5.8)

Using the analogues of eqs. (F.23) and (F.24), we end up with the expected result

〈0|T (Ψ(x1)Ψ(x2))|0〉 =
∫

d4p

(2π)4
e−ip·(x1−x2)

i(/p+m)

p2 −m2
. (G.5.9)

In principle, the analogous computation can be carried out for a single four-component Ma-

jorana fermion field ΨM (x) coupled to a Majorana fermionic source, Jξ(x). The corresponding

action is similar to that of eq. (G.5.4), with an extra overall factor of 1/2. However, in eval-

uating the functional derivative in eq. (G.5.8), one must take into account that the Majorana

fermionic source Jξ(x) satisfies JCξ ≡ CJ T

ξ = Jξ. Consequently, the functional derivative with

respect to Jξ is related to the corresponding functional derivative with respect to Jξ. Hence,

the calculation of eq. (G.5.8) will yield two equal terms that will cancel the overall factor of

1/2, resulting again in eq. (G.5.9). Nevertheless, this computation is somewhat awkward using

four-component spinor notation, in contrast to the straightforward calculation of Appendix F.

We next examine the various interactions involving four-component fermions. First, we

consider the interactions of a neutral scalar φ or a gauge boson Aaµ with a pair of Majorana

fermions To obtain the interactions of the four-component fermion fields, we first identify the

neutral two-component fermion mass eigenstate neutral fields ξi. Using eqs. (4.3.9) and (4.3.15),

the interaction Lagrangian in two-component form is given by:

Lint = −1
2(λ

ijξiξj + λijξ
†iξ†j)φ− (Ga)i

j ξ†iσµξjA
a
µ , (G.5.10)

where λ is a complex symmetric matrix with λij ≡ λ∗ij [cf. eq. (3.2.2)], the Aaµ are the mass

eigenstate gauge fields, and the corresponding hermitian matrices Ga are defined in eq. (4.3.16).

It is now simple to convert this result into four-component notation:

Lint = −1
2(λ

ijΨMiPLΨMj + λijΨ
i
MPRΨ

j
M )φ− (Ga)i

jΨ i
Mγ

µPLΨMjA
a
µ , (G.5.11)

where the ΨMj are a set of (neutral) Majorana four-component fermions. It is convenient to use

eq. (G.1.98) to rewrite the term proportional to (Ga)i
j in eq. (G.5.11) as follows

(Ga)i
jΨ i

Mγ
µPLΨMj =

1
2 (G

a)i
j
[
Ψ i
Mγ

µPLΨMj −ΨMjγ
µPRΨ i

M

]

= 1
2ΨMiγ

µ
[
(Ga)i

jPL − (Ga)j
iPR

]
ΨMj . (G.5.12)

In the last step above, we have lowered the flavor indices of the four-component Majorana

fermion fields, as the heights of these indices can be arbitrarily chosen [cf. eq. (G.1.76)].

Using standard four-component spinor methods, the corresponding four-component spinor

Feynman rules are displayed in Fig. G.5.2. A Majorana fermion is neutral under all conserved

charges (and thus equal to its own antiparticle). Hence, an arrow on a Majorana fermion line

220



c

b

φ
ΨMi

ΨMj

−i[λijPL + λijPR]b
c

c

b

Aµa ΨMi

ΨMj

− iγµ[(Ga)ijPL − (Ga)j
iPR]b

c

Figure G.5.2: Feynman rules for neutral scalar and gauge boson interactions with a pair of
four-component Majorana fermions (labeled by four-component spinor indices b and c). The Ga

are defined in eq. (4.3.16). The index a runs over the neutral (mass eigenstate) gauge bosons.

simply reflects the structure of the interaction Lagrangian; i.e., ΨM [ΨM ] is represented by an

arrow pointing out of [into] the vertex. These arrows are then used for determining the placement

of the u and v spinors in an invariant amplitude, according to the rules of Appendix G.6. In

particular, the four-component spinor labels of Fig. G.5.2 indicate that one should traverse any

continuous fermion line by moving antiparallel to the direction of the fermion arrows.

Next, we consider the interactions of a (possibly complex) scalar Φ or a gauge boson Aaµ with

a pair of Dirac fermions. The Dirac fermions are charged with respect to some global or local U(1)

symmetry, which is assumed to be a symmetry of the Lagrangian. To obtain the interactions of

the four-component fermion fields, we first identify the mass-degenerate oppositely charged pairs

χj and ηj (with U(1)-charges qj and −qj, respectively) that combine to form the mass eigenstate

Dirac fermions. The scalar field Φ carries a U(1)-charge qΦ. We also identify the gauge boson

mass eigenstates of definite U(1)-charge by Aaµ as described in Section 4.3 (cf. footnote 41).

Using eqs. (4.3.9) and (4.3.18), the interaction Lagrangian in two-component form is given by:

Lint = −κijχiηjΦ− κijχ†iη†jΦ
† −

[
(GaL)i

jχ†iσµχj − (GaR)j
iη†iσ

µηj
]
Aaµ , (G.5.13)

where κi
j ≡ (κij)

∗ [cf. eq. (3.2.28)] and κ is an arbitrary complex matrix coupling, subject to the

conditions that κij = 0 unless qΦ = qj−qi. For the gauge boson couplings, we follow the notation

of eqs. (4.3.19) and (4.3.20). In particular, AaµG
a
L and AaµG

a
R are hermitian matrix-valued gauge

fields, which when summed over a can contain both neutral and charged [with respect to U(1)]

mass eigenstate gauge boson fields. Converting to four-component notation yields:

Lint = −κijΨ jPLΨiΦ− κijΨiPRΨjΦ
†−
[
(GaL)i

jΨ iγµPLΨj + (GaR)i
jΨ iγµPRΨj

]
Aaµ , (G.5.14)

where the Ψj are a set of Dirac four-component fermions. If Φ is a real (neutral) scalar field,

then we shall write φ ≡ Φ = Φ†. The corresponding four-component spinor Feynman rules

are exhibited in Fig. G.5.3. The rules involving the charge-conjugated Dirac fields have been
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b

c

φ
Ψi

Ψj

or

c

b

φ

ΨC i

ΨC j

−i(κijPL + κj
iPR)b

c

b

c

Φ
Ψi

Ψj

or

c

b

Φ

ΨC i

ΨC j

−iκij(PL)bc

c

b

Φ
Ψi

Ψj

or

b

c

Φ

ΨC i

ΨC j

−iκij(PR)bc

c

b

Aµa Ψi

Ψj

− iγµ[(GaL)ijPL + (GaR)i
jPR]b

c

or or

b

c
Aµa

ΨCi

ΨCj

iγµ[(GaR)i
jPL + (GaL)i

jPR]b
c

Figure G.5.3: Feynman rules for neutral scalar (φ), charged scalar (Φ) and gauge boson (Aµa)
interactions with a pair of four-component Dirac fermions (labeled by four-component spinor
indices b and c). In each case, one has two choices for the corresponding Feynman rule: one
involving Ψ and one involving the oppositely charged ΨC (with the arrows of the corresponding
Ψ and ΨC lines pointing in opposite directions). The arrows indicate the direction of flow of the
U(1)-charges of the Dirac fermion and charged scalar fields. The index a runs over both neutral
and charged (mass eigenstate) gauge bosons, consistent with charge conservation at the vertex.

obtained by using eq. (G.1.90). Note that the arrows on the charged scalar and Dirac fermion

lines depict the flow of the conserved U(1)-charge.

Finally, we treat the interaction of a charged scalar boson Φ (with U(1)-charge qΦ) or a

charged vector boson W (with U(1)-charge qW ) with a fermion pair consisting of one Majorana
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and one Dirac fermion. We denote the neutral fermion mass eigenstate fields by ξi and pairs of

oppositely charged fermion mass eigenstate fields by χj and η
j (with U(1)-charges qj and −qj,

respectively). Using eqs. (4.3.9) and (4.3.21), the interaction Lagrangian is given by:

Lint = −Φ[(κ1)ijξiηj + (κ2)ijξ
†iχ†j ]− Φ†[(κ2)

ijξiχj + (κ1)i
jξ†ii η

†
j ]

−Wµ[(G1)j
iχ†jσµξi − (G2)ijξ

†iσµηj ]−W †
µ[(G1)

j
iξ

†iσµχj − (G2)
ijη†jσ

µξi] , (G.5.15)

where κ1, κ2, G1, and G2 are arbitrary complex coupling matrices, subject to the conditions

that (κ1)
i
j = (κ2)ij = 0 unless qΦ = qj, and (G1)j

i = (G2)ij = 0 unless qW = qj. Converting to

four-component spinor notation yields:

Lint = −
[
(κ1)

i
jΨ

jPLΨMi + (κ2)ijΨ
jPRΨ

i
M

]
Φ

−
[
(G1)j

iΨ jγµPLΨMi + (G2)ijΨ
jγµPRΨ

i
M

]
Wµ + h.c. (G.5.16)

The corresponding four-component spinor Feynman rules are exhibited in Fig. G.5.4.

There is an equivalent form for the interactions given by eqs. (G.5.13) and (G.5.16) where

Lint is written in terms of charge-conjugated Dirac fields [after using eq. (G.1.90)]. The Feynman

rules involving Dirac fermions can take two possible forms, as shown in Figs. G.5.3 and G.5.4.

As previously noted, the direction of an arrow on a Dirac fermion line indicates the direction

of the fermion charge flow (whereas the arrow on the Majorana fermion line is unconnected to

charge flow). However, we are free to choose either a Ψ or ΨC line to represent a Dirac fermion at

any place in a given Feynman graph.147 For any decay or scattering process, a suitable choice of

either the Ψ-rule or the ΨC-rule at each vertex (the choice can be different at different vertices),

will guarantee that the arrow directions on fermion lines flow continuously through the Feynman

diagram. Then, to evaluate an invariant amplitude, one should traverse any continuous fermion

line (either Ψ or ΨC) by moving antiparallel to the direction of the fermion arrows, as indicated

by the order of the four-component spinor labels in the Feynman rules of Figs. G.5.3 and G.5.4.

Examples will be provided in Appendix G.6.

G.6 Applications of four-component spinor Feynman rules

For a given process, there may be a number of distinct choices for the arrow directions on the

Majorana fermion lines, which may depend on whether one represents a given Dirac fermion by

Ψ or ΨC . However, different choices do not lead to independent Feynman diagrams.148 When

computing an invariant amplitude, one first writes down the relevant Feynman diagrams with

no arrows on any Majorana fermion line. The number of distinct graphs contributing to the

147Since the charge of ΨC is opposite in sign to the charge of Ψ, the corresponding arrow directions of the Ψ
and ΨC lines must point in opposite directions.
148In contrast, the two-component Feynman rules developed in Section 4 require that two vertices differing by

the direction of the arrows on the two-component fermion lines must both be included in the calculation of the
matrix element.
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c

Φ
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Φ
ΨMi
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−i
[
(κ1)

i
jPL + (κ2)ijPR)

]
b
c

c

b

Φ
ΨMi

Ψj

or

b

c

Φ
ΨMi

ΨC j

−i
[
(κ2)

ijPL + (κ1)i
jPR)

]
b
c

b

c

W µ

ΨMi

Ψj

− iγµ
[
(G1)j

iPL + (G2)ijPR)
]
b
c

or or

c

b

W µ

ΨMi

ΨC j

iγµ
[
(G2)ijPL + (G1)j

iPR)
]
b
c

c

b

W µ

ΨMi

Ψj

or or

− iγµ
[
(G1)

j
iPL + (G2)

ijPR
]
b
c

b

c

W µ

ΨMi

ΨC j

iγµ
[
(G2)

ijPL + (G1)
j
iPR

]
b
c

Figure G.5.4: Feynman rules for charged scalar and vector boson interactions with a fermion
pair consisting of one Majorana and one Dirac four-component fermion (labeled by four-
component spinor indices b and c). In each case, one has two choices for the corresponding
Feynman rule: one involving Ψ and one involving the oppositely charged ΨC (with the arrows
of the Ψ and ΨC lines pointing in opposite directions). The arrows of the Dirac fermion and
charged bosons indicate the direction of flow of the corresponding U(1)-charges. That is, the
charge of the boson (either Φ or W above) must coincide with the charge of Ψj. The arrows
of the Majorana fermions satisfy the requirement that the fermion line arrow directions flow
continuously through the vertex. 224



process is then determined. Finally, one makes some choice for how to distribute the arrows on

the Majorana fermion lines and how to label Dirac fermion lines (either as the field Ψ or its

charge conjugate ΨC) in a manner consistent with the rules of Figs. G.5.2 and G.5.4. The end

result for the invariant amplitude (apart from an overall unobservable phase) does not depend

on the choices made for the direction of the fermion arrows.

Using the above procedure, the Feynman rules for the external fermion wave functions are

the same for Dirac and Majorana fermions:

• u(~p, s): incoming Ψ [or ΨC ] with momentum ~p parallel to the arrow direction,

• ū(~p, s): outgoing Ψ [or ΨC ] with momentum ~p parallel to the arrow direction,

• v(~p, s): outgoing Ψ [or ΨC ] with momentum ~p antiparallel to the arrow direction,

• v̄(~p, s): incoming Ψ [or ΨC ] with momentum ~p antiparallel to the arrow direction.

The proof that the above rules for external wave functions apply unambiguously to Majorana

fermions is straightforward. Simply insert the plane wave expansion of the Majorana field given

by eq. (G.4.1) into eq. (G.5.11), and evaluate matrix elements for, e.g., the decay of a scalar or

vector particle into a pair of Majorana fermions.

We now reconsider the matrix elements for scalar and vector particle decays into fermion

pairs and 2 → 2 elastic scattering of a fermion off a scalar and vector boson, respectively. We

shall compute the matrix elements using the Feynman rules of Fig. G.5.2, and check that the

results agree with the ones obtained by two-component methods in Section 4.5.

Consider first the decay of a neutral scalar boson φ into a pair of Majorana fermions,

φ → ΨMi(~p1, s1)ΨMj(~p2, s2), of flavor i and j, respectively. Here, ΨMi(~p, s) denotes the one-

particle state given by eq. (3.2.13). The matrix element for the decay is given by

iM = −iū(~p1, s1)(λ
ijPL + λijPR)v(~p2, s2) . (G.6.1)

One can easily check that this result matches with eq. (4.5.2), which was derived using two-

component spinor techniques. Note that if one had chosen to switch the two final states (equiv-

alent to switching the directions of the Majorana fermion arrows), then the resulting matrix

element would simply exhibit an overall sign change [due to the results of eqs. (G.4.34) and

(G.4.35)]. This overall sign change is a consequence of the Fermi-Dirac statistics, and corre-

sponds to changing which order one uses to construct the two-particle final state.

Consider next the decay of a (neutral or charged) scalar boson Φ into a pair of Dirac

fermions, Φ → Fi(~p1, s1)F
j(~p2, s2), where by F (~p, s) and F (~p, s) we mean the one-particle

states given by eq. (3.2.22). The matrix element for the decay is given by

iM = −iū(~p1, s1)(κ
j
iPL + κi

jPR)v(~p2, s2) , (G.6.2)
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which is equivalent to eq. (4.5.5), which was derived using two-component spinor techniques.

For the decay of a neutral vector boson (denoted by Aµ) into a pair of Majorana fermions,

Aµ → ΨMi(~p1, s1)ΨMj(~p2, s2), we use the Feynman rules of Fig. G.5.2 to obtain:

iM = −iū(~p1, s1)γ
µ
[
Gi

jPL −Gj iPR
]
v(~p2, s2)εµ , (G.6.3)

The above result is equivalent to eq. (4.5.8), which was derived using two-component spinor

techniques. Again, we note that if one had chosen to switch the two final states (equivalent

to switching the directions of the Majorana fermion arrows), then the resulting matrix element

would simply exhibit an overall sign change [due to the results of eqs. (G.4.36) and (G.4.37)].

For i = j, eq. (G.6.3) simplifies to

iM = iGū(~p1, s1)γ
µγ5v(~p2, s2)εµ , (G.6.4)

where G ≡ Gi
i. The absence of a vector coupling of the vector boson to a pair of identical

Majorana fermions is a consequence of the identity ΨMγ
µΨM = 0 noted below eq. (G.1.97).

For the decay of a (neutral or charged) vector particle Aµ into a fermion pair consisting of

a Dirac fermion and antifermion, Aµ → Fi(~p1, s1)F
j(~p2, s2), the matrix element is given by:

iM = −iū(~p1, s1)γ
µ
[
(GL)i

jPL + (GR)i
jPR

]
v(~p2, s2)εµ , (G.6.5)

which matches the result of eq. (4.5.12).

Finally, we consider the decay of a charged boson to a fermion pair consisting of one Dirac

fermion and one Majorana fermion. Using the Feynman rules of Fig. G.5.4, we see that we

have a choice of two rules for each decay process. As an example, consider the decay W →
ΨMi(~p1, s1)Fj(~p2, s2). If we apply the WΨMΨ Feynman rule of Fig. G.5.4, we obtain:

iM = −iū(~p2, s2)
[
(G1)j

iPL + (G2)ijPR
]
v(~p1, s1) . (G.6.6)

If we apply the corresponding WΨMΨC Feynman rule, we obtain the negative of eq. (G.6.6)

with PL ↔ PR and (~p1, s1)↔ (~p2, s2). Using eqs. (G.4.36) and (G.4.37), the resulting amplitude

is the negative of eq. (G.6.6), as expected since the order of the spinor wave functions in the

two computations is reversed. A similar conclusion is obtained for the decay Φ→ ΨMiFj.

Turning to the elastic scattering of a Majorana fermion and a neutral scalar, we shall

examine two equivalent ways for computing the amplitude. Following the rules previously stated,

there are two possible choices for the direction of arrows on the Majorana fermion lines. Thus,

may evaluate either one of the following two diagrams:

p −p
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plus a second set of diagrams (not shown) where the initial and final state scalars are crossed.

Evaluating the first diagram above, the matrix element for φΨM → φΨM is given by:

iM =
−i

s−m2
ū(~p2, s2)(λPL + λ∗PR)(/p +m)(λPL + λ∗PR)u(~p1, s1) + (crossed)

=
−i

s−m2
ū(~p2, s2)

[
|λ|2/p+

(
λ2PL + (λ∗)2PR

)
m
]
u(~p1, s1) + (crossed) , (G.6.7)

where m is the Majorana fermion mass and
√
s is the center-of-mass energy. Using eqs. (G.1.2)

and (G.4.11), one recovers the results of eq. (4.5.13). Had we chosen to evaluate the second

diagram instead, the resulting amplitude would have been given by:

iM =
−i

s−m2
v̄(~p1, s1)

[
−|λ|2/p+

(
λ2PL + (λ∗)2PR

)
m
]
v(~p2, s2) + (crossed) . (G.6.8)

Using eq. (G.4.33), it follow that:

v̄(~p1, s1)v(~p2, s2) = −ū(~p2, s2)u(~p1, s1) , (G.6.9)

v̄(~p1, s1)γ
µv(~p2, s2) = ū(~p2, s2)γ

µu(~p1, s1) . (G.6.10)

Consequently, the amplitude computed in eq. (G.6.8) is just the negative of eq. (G.6.7). This

is expected, since the order of spinor wave functions in eq. (G.6.8) is an odd permutation of

the order of spinor wave functions in eq. (G.6.7) [(12) and (21), respectively]. As in the two-

component Feynman rules, the overall sign of the amplitude is arbitrary, but the relative signs of

any pair of diagrams is unambiguous. This relative sign is positive [negative] if the permutation

of the order of spinor wave functions of one diagram relative to the other diagram is even [odd].

Next, we consider the elastic scattering of a charged fermion and a neutral scalar. Again,

we examine two equivalent ways for computing the amplitude. Following our rules, there are two

possible choices for the directions of the fermion line arrows, depending on whether we represent

the fermion by Ψ or ΨC . Thus, we may evaluate either one of the following two diagrams:

p

Ψ Ψ

−p

ΨC ΨC

plus a second set of diagrams (not shown) where the initial and final state scalars are crossed.

Evaluating the first diagram above, the matrix element for φF → φF is given by eq. (G.6.7), with

λ replaced by κ. Had we chose to evaluate the second diagram instead, the resulting amplitude

would have been given by eq. (G.6.8), with λ replaced by κ. Thus, the discussion above in the

case of neutral fermion scattering processes also applies to charged fermion scattering processes.

In processes that only involve vertices with two Dirac fields, it is never necessary to use

charge-conjugated Dirac fermion lines. In contrast, consider the following process that involves
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a vertex with one Dirac and one Majorana fermion. Specifically, we examine the scattering of

a Dirac fermion and a charged scalar into its charge-conjugated final state, via the exchange

of a Majorana fermion: Φ†F → ΦF . If one attempts to draw the relevant Feynman diagram

employing Dirac fermion lines but with no charge-conjugated Dirac fermion lines, one finds that

there is no possible choice of arrow direction for the Majorana fermion that is consistent with

the vertex rules of Fig. G.5.4. The resolution is simple: one can choose the incoming line to be

Ψ and the outgoing line to be ΨC or vice versa. Thus, the two possible choices are given by:

p

Ψ ΨC

−p

ΨC Ψ

plus a second diagram in each case (not shown) in which the initial and final scalars are crossed.

If we evaluate the first diagram, the resulting amplitude is given by:

iM =
−i

s−m2
ū(~p2, s2)(κ2PL + κ∗1PR)(/p +m)(κ2PL + κ∗1PR)u(~p1, s1) + (crossed)

=
−i

s−m2
ū(~p2, s2)

[
κ∗1κ2/p+

(
κ22PL + (κ∗1)

2PR
)
m
]
u(~p1, s1) + (crossed) , (G.6.11)

where m is the Majorana fermion mass. This result is equivalent to eq. (4.5.17) obtained via

the two-component spinor methods. Had we evaluated the second diagram, then one finds after

using eqs. (G.6.9) and (G.6.10) that the resulting amplitude is just the negative of eq. (G.6.11),

as expected. As before, the relative sign between diagrams for the same process is unambiguous.

In the literature, there are a number of alternative methods for dealing with scattering

processes involving Majorana particles. For example, one can define a fermion number violating

propagator for four-component fermions (see, e.g., ref. [7]). Using the methods of ref. [7], factors

of the charge conjugation matrix C appear both in fermion-number-violating propagators and

vertices. However, all such factors of C eventually cancel out by the end of the computation

of any S-matrix amplitude. Moreover, such methods often involve subtle choices of signs that

require first-principles computations to verify. As previously noted, our four-component fermion

diagrammatic techniques do not suffer from either of these complications.

In the case of elastic scattering of a Majorana fermion and a neutral vector boson, the two

contributing diagrams include the following diagram:

p
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plus a second diagram (not shown) where the initial and final state vector bosons are crossed.

Consider first the scattering of a neutral Majorana fermion of mass m. Using the Feynman

rules of Fig. G.5.2, the Feynman rule for the AµΨMΨM vertex is given by iGγµγ5. Hence, the

corresponding matrix element is given by

iM =
−iG2

s−m2
ū(~p2, s2) γ ·ε∗2 (/p−m) γ ·ε1u(~p1, s1) + (crossed) , (G.6.12)

where we have used γνγ5(/p+m)γµγ5 = γν(/p−m)γµ. Using eqs. (G.1.2) and (G.4.11), one easily

recovers the results of eq. (4.5.14).

The scattering of a Dirac fermion of mass m and a neutral vector boson can be similarly

treated. The relevant Feynman graphs are the same as in the previous case, and the matrix

element is given by

iM =
−i

s−m2
ū(~p2, s2) γ ·ε∗2 (GLPL +GRPR)(/p+m) γ ·ε1 (GLPL +GRPR)u(~p1, s1) + (crossed)

=
−i

s−m2
ū(~p2, s2) γ ·ε∗2

[
(G2

LPL +G2
RPR)/p +GLGRm

]
γ ·ε1u(~p1, s1) + (crossed) . (G.6.13)

One can easily check that this result coincides with that of eq. (4.5.18).

Finally, we examine the elastic scattering of two identical Majorana fermions via scalar

exchange. The three contributing diagrams are:

and the corresponding matrix element is given by

iM =
−i

s−m2
φ

[v̄1(λPL + λ∗PR)u2 ū3(λPL + λ∗PR)v4]

+ (−1) −i
t−m2

φ

[ū3(λPL + λ∗PR)u1 ū4(λPL + λ∗PR)u2]

+
−i

u−m2
φ

[ū4(λPL + λ∗PR)u1 ū3(λPL + λ∗PR)u2] , (G.6.14)

where ui ≡ u(~pi, si), vj ≡ v(~pj , sj) and mφ is the exchanged scalar mass. The relative minus

sign of the t-channel graph relative to the s and u-channel graphs is obtained by noting that

3142 [4132] is an odd [even] permutation of 1234. Using eqs. (G.1.7), (G.4.11) and (G.4.12), one

easily recovers the results of eq. (4.5.19).
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G.7 Self-energy functions and pole masses for four-component fermions

In this section, we examine the self-energy functions and the pole masses for a set of four-

component fermions. We first consider four-component Dirac fermion fields Ψαi, where α is

the four-component spinor index and i is the flavor index. The full, loop-corrected Feynman

propagators with four-momentum pµ are defined by the Fourier transforms [cf. footnote 35] of

vacuum expectation values of time-ordered products of bilinears of the fully interacting four-

component fermion fields:

〈0|TΨai(x)Ψ
bj(y) |0〉FT = i(Sa

b)i
j(p) , (G.7.1)

with [307–314]

S(p) ≡ /p
[
PLS

T

L(p
2) + PRSR(p2)

]
+ PLS

T

D(p2) + PRSD(p2) , (G.7.2)

where the four-component spinor indices α and β and the flavor indices i and j have been

suppressed. As in Section 4.6, we shall organize the computation of the full propagator in terms

of the 1PI self-energy function [310]:149

Σ(p) ≡ /p
[
PLΣL(p

2) + PRΣ
T

R(p
2)
]
+ PLΣD(p2) + PRΣ

T

D(p2) . (G.7.3)

Diagrammatically, iS and −iΣ are shown in Fig. G.7.1.

ba

ji

p

i(Sa
b)i

j(p)

p

ba

i j

−i(Σa
b)i

j(p)

Figure G.7.1: The full, loop-corrected propagator for four-component Dirac fermions,
i(Sa

b)i
j(p), is denoted by the shaded box, which represents the sum of all connected Feyn-

man diagrams, with external legs included. The self-energy function for four-component Dirac
fermions, −i(Σa

b)i
j(p), is denoted by the shaded circle, which represents the sum of all one-

particle irreducible, connected Feynman diagrams with the external legs amputated. In both
cases, The four-momentum p flows from right to left.

The hermiticity of the effective action implies that S and Σ satisfy hermiticity condi-

tions [299,315]

[ST]⋆ = ASA−1 , [ΣT]⋆ = AΣA−1 , (G.7.4)

where A is the Dirac conjugation matrix [A = γ0 in the standard representations; see eq. (G.1.20)

and the text that follows] and the star symbol was defined in the paragraph below eq. (4.6.6).

149Our notation in eq. (G.7.3) differs from that of ref. [310], as we employ Σ
T

R instead of ΣR. Our motivation
for this choice is that in the case of Majorana fermions [cf. eq. (G.7.15)], we simply have ΣL = ΣR, without an
extra transpose (or conjugation). We have also chosen to employ ST

L in eq. (G.7.2) for similar reasons.
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Applying eq. (G.7.4) to eqs. (G.7.2) and (G.7.3) then yields the following conditions for the

complex matrix functions:

[ST

L]
⋆ = SL , [ST

R]
⋆ = SR , SD = S ⋆

D , (G.7.5)

[ΣT

L]
⋆ = ΣL , [ΣT

R]
⋆ = ΣR , ΣD = Σ ⋆

D . (G.7.6)

Starting at tree level and comparing with Fig. G.5.1, the full propagator function is given

by:

Si
j(p) = (/p+m)δji /(p

2 −m2
i ) + . . . , (G.7.7)

with no sum over i implied. The full loop-corrected propagator can be expressed diagrammati-

cally in terms of the 1PI self-energy function:

ba

ji
=

ba

ji

ca

ki

d

ℓ

b

j
+

(G.7.8)

As in Section 4.6, the algebraic representation of eq. (G.7.8) can be written as [cf. footnote 53]:

S = T + TΣS = (T−1 −Σ)−1 , (G.7.9)

where T i
j ≡ (/p + m)δji /(p

2 − m2
i ) is the tree-level contribution to S given in eq. (G.7.7). By

writing the expressions for S and Σ given in eqs. (G.7.2) and (G.7.3) and T in block matrix form

using eq. (G.1.2), one can verify that eq. (G.7.9) is equivalent to eq. (4.6.26). Consequently, the

complex pole masses of the corresponding Dirac fermions are again determined from eq. (4.6.31).

In the special case of a parity-conserving vectorlike theory of Dirac fermions (such as QED

or QCD), the pseudoscalar and pseudovector parts of S(p) and Σ(p) must be absent. Thus,

the following relations must hold among the loop-corrected propagator functions and self-energy

functions, respectively:

SR = ST

L , SD = [S T

D]⋆ , (G.7.10)

ΣL = ΣT

R , ΣD = [ΣT

D]⋆ , (G.7.11)

in agreement with eqs. (4.6.32) and (4.6.33).

In the case of a set of four-component Majorana fermion fields, we can still use the results

of eqs. (G.7.2)–(G.7.9). However, one obtains additional constraints on the full propagator

and self-energy matrix functions due to the Majorana condition ΨMi = CΨ
T

Mi. Inserting this

result into eq. (G.7.1), and making use of the anticommutativity of the fermion fields, one easily

derives:

〈0|TΨMai(x)Ψ
b
Mj(y) |0〉FT = Cae 〈0|TΨMdi(x)Ψ

e
Mj(y) |0〉FT (C−1)db . (G.7.12)
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Consequently,

CSTC−1 = S , CΣTC−1 = Σ . (G.7.13)

Inserting the expressions for S andΣ [eqs. (G.7.2) and (G.7.3)] and using the result of eq. (G.1.90),

it follows that:

SL = SR , SD = ST

D , SD = S
T

D , (G.7.14)

ΣL = ΣR , ΣD = ΣT

D , ΣD = Σ
T

D . (G.7.15)

As expected, with these constraints the form of eq. (4.6.26) matches precisely with the form

of eq. (4.6.16), corresponding to the equation for the full propagator functions for a theory of

generic two-component fermion fields. In the notation of Section 4.6, we can therefore identify:

C ≡ SL = SR , D ≡ SD , Ξ ≡ ΣL = ΣR, and Ω ≡ ΣD.

Appendix H: Covariant spin operators and the Bouchiat-Michel

formulae

Bouchiat and Michel derived a useful set of formulae [112] that generalize the spin projection

operators used in four-component spinor computations. In this Appendix, we establish the two-

component analogues of the Bouchiat-Michel formulae, and demonstrate their equivalence to

the corresponding four-component spinor formulae.

H.1 The covariant spin operators for a spin-1/2 fermion

Consider a massive spin-1/2 fermion of mass m and four-momentum p. We define a set of

three four-vectors Saµ (a = 1, 2, 3) such that the Saµ and pµ/m form an orthonormal set of

four-vectors. In the rest frame of the fermion, where pµ = (m ; ~0), we can define

Saµ ≡ (0 ; ŝa) , a = 1, 2, 3 , (H.1.1)

where the unit vectors ŝa are a mutually orthonormal set of unit three-vectors that form a basis

for a right-handed coordinate system. Explicit forms for the ŝa depend on the Euler angle γ

used to define the spinor wave function χs(ŝ). Two common choices corresponding to γ = −φ
and γ = 0 are given in eqs. (C.1.39) and (C.1.40), respectively. Using eq. (2.116), the three four-

vectors Saµ, in a reference frame in which the four-momentum of the fermion is pµ = (E ; ~p),

are given by:

Saµ =

(
~p·ŝa

m
; ŝa +

(~p·ŝa) ~p

m(E +m)

)
, a = 1, 2, 3 . (H.1.2)

As discussed in Appendix C, we identify ŝ = ŝ3 as the quantization axis used in defining the

third component of the spin of the fermion in its rest frame. It then follows that the spin

four-vector, previously introduced in eq. (3.1.15) is given by Sµ = S3µ.
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The orthonormal set of four four-vectors pµ/m and the Saµ satisfy the following Lorentz-

covariant relations:

p·Sa = 0 , (H.1.3)

Sa ·Sb = −δab , (H.1.4)

ǫµνλσpµS
1
νS

2
λS

3
σ = −m, (H.1.5)

SaµS
b
ν − SaνSbµ = ǫabcǫµνρσS

cρ p
σ

m
, (H.1.6)

Saµ S
a
ν = −gµν +

pµpν
m2

, (H.1.7)

where the sum over the repeated indices is implicit. It is convenient to define a matrix-valued

spin four-vector S µ, whose matrix elements are given by:

S
µ
ss′ ≡ Saµτass′ , s, s′ = ±1

2 , (H.1.8)

where τass′ are the matrix elements of the Pauli matrices (see footnote 95). Then, we can rewrite

eqs. (H.1.4) and (H.1.6) as:

1
3 gµνS

µ
S

ν = −12×2 , (H.1.9)

S
µ
S

ν −S
ν
S

µ =
2i

m
ǫµνρσSρpσ , (H.1.10)

where the product S µS ν corresponds to ordinary 2×2 matrix multiplication. The S µ serve as

covariant spin operators for a spin-1/2 fermion. In particular, in the rest frame, the 1
2S

i satisfy

the usual SU(2) commutation relations, with (12
~S~S~S )2 = 3

4 as expected for a spin-1/2 particle.

It is often desirable to work with helicity states. In this case, we choose:

ŝa = p̂a , (H.1.11)

where the p̂a are an orthonormal triad of unit three-vectors with p̂3 ≡ p̂. Moreover, since

p̂a ·p̂ = 0 for a 6= 3, it follows that Saµ = (0 ; p̂a) for a = 1, 2 in all reference frames obtained

from the rest frame by a boost in the p̂ direction. Hence, in a reference frame where pµ = (E ; ~p),

eq. (H.1.2) yields,

S1µ = (0 ; p̂1) , (H.1.12)

S2µ = (0 ; p̂2) , (H.1.13)

S3µ =

( |~p |
m

;
E

m
p̂

)
, (H.1.14)

in a coordinate system where p̂ = (sin θ cosφ, sin θ sinφ, cos θ). One can check that eqs. (H.1.1)–

(H.1.7) are also satisfied by the Saµ defined in eqs. (H.1.12)–(H.1.14).
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As expected, S3µ is the spin four-vector for helicity states obtained in eq. (3.1.16). In the

high energy limit (E ≫ m),

mSaµ = pµ δa3 +O(m) . (H.1.15)

Explicit forms for p̂1 and p̂2 are convention dependent and depend on the conventional choice

of the Euler angle γ. For example, consider the quantities:

Sµ− ≡ 1
2S

aµτa1
2 ,−

1
2

= 1
2(S

1µ − iS2µ) , Sµ+ ≡ 1
2S

aµτa
−1
2 ,

1
2

= 1
2 (S

1µ + iS2µ) . (H.1.16)

Using eqs. (H.1.11)–(H.1.14) and employing eq. (C.1.27) with R given by eq. (C.1.4),

σ ·S− = eiγ




1
2 sin θ e−iφ sin2

θ

2

−eiφ cos2 θ
2

−1
2 sin θ


 , σ ·S+ = e−iγ




1
2 sin θ −e−iφ cos2 θ

2

eiφ sin2
θ

2
−1

2 sin θ


 .

(H.1.17)

In the convention of eq. (C.1.39) [eq. (C.1.40)], we take γ = −φ [γ = 0], respectively.

H.2 Two-component spinor wave function relations

In Section 3.1, we wrote down explicit forms for the undotted spinor wave functions

xα(~p, s) =
√
p·σ χs , xα(~p, s) = −2sχ†

−s
√
p·σ , (H.2.1)

yα(~p, s) = 2s
√
p·σ χ−s , yα(~p, s) = χ†

s

√
p·σ , (H.2.2)

and the dotted spinor wave functions

x†α̇(~p, s) = −2s
√
p·σ χ−s , x†α̇(~p, s) = χ†

s

√
p·σ , (H.2.3)

y†α̇(~p, s) =
√
p·σ χs , y†α̇(~p, s) = 2sχ†

−s
√
p·σ , (H.2.4)

where
√
p·σ and

√
p·σ are defined either by eqs. (2.108) and (2.109) or by eqs. (2.112) and

(2.113), respectively (as mandated by the spinor index structure). As shown in Appendix C,

the two-component spinors χs satisfy:

1
2 ~σ ·ŝaχs′ =

1
2τ

a
ss′χs , χ†

s(ŝ)χs′(ŝ) = δss′ , s , s′ = ±1
2 . (H.2.5)

Next, we use eqs. (2.117) and (2.118) to obtain:

√
p·σ Sa ·σ√p·σ = m~σ ·ŝa , (H.2.6)

√
p·σ Sa ·σ

√
p·σ = −m~σ ·ŝa , (H.2.7)

which extends the results of eqs. (3.1.17) and (3.1.18). As a result, we obtain a generalization

of eqs. (3.1.24)–(3.1.27):
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(Sa ·σ)α̇βxβ(~p, s′) = τa
ss′y

†α̇(~p, s) , (Sa ·σ)αβ̇y†β̇(~p, s′) = −τass′xα(~p, s) , (H.2.8)

(Sa ·σ)αβ̇x†β̇(~p, s′) = −τas′syα(~p, s) , (Sa ·σ)α̇βyβ(~p, s′) = τa
s′sx

†α̇(~p, s) , (H.2.9)

xα(~p, s′)(Sa ·σ)αβ̇ = −τa
s′sy

†
β̇
(~p, s) , y†α̇(~p, s

′)(Sa ·σ)α̇β = τa
s′sx

β(~p, s) , (H.2.10)

x†α̇(~p, s
′)(Sa ·σ)α̇β = τa

ss′y
β(~p, s) , yα(~p, s′)(Sa ·σ)αβ̇ = −τa

ss′x
†
β̇
(~p, s) , (H.2.11)

where there are implicit sums over the repeated labels s = ±1
2 . As expected, the case of a = 3

simply reproduces the results of eqs. (3.1.24)–(3.1.27) obtained previously. The above equations

also apply to helicity wave functions x(~p, λ) and y(~p, λ) by replacing s, s′ with λ, λ′ and defining

the Saµ by eqs. (H.1.12)–(H.1.14).

The derivation of eqs. (H.2.8)–(H.2.11) for arbitrary a closely follows the corresponding

derivation for a = 3 previously given. For example, using eqs. (H.2.6) and (H.2.7) and the

definitions for xα(~p, s) and y
†α̇(~p, s), we find (suppressing spinor indices),

√
p·σ Sa ·σ x(~p, s′) = √p·σ Sa ·σ√p·σ χs′ = m~σ ·ŝa χs′ = mτass′ χs , (H.2.12)

after using eq. (H.2.5). Multiplying both sides of eq. (H.2.12) by
√
p·σ, we end up with

Sa ·σ x(~p, s′) = τass′
√
p·σ χs = τass′ y

†(~p, s) . (H.2.13)

Similarly,

Sa ·σx†(~p, s′) = 2s′τa−s,−s′
√
p·σ χ−s = −τas′s y(~p, s) , (H.2.14)

where we have used:

4ss′τa−s,−s′ = −τas′s , for s, s′ = ±1/2 . (H.2.15)

All the results of eqs. (H.2.8)–(H.2.11) can be derived in this manner.

H.3 Two-component Bouchiat-Michel formulae

To establish the Bouchiat-Michel formulae, we begin with the following identity:

1
2 (δss′ + ~σ ·ŝa τass′)

∑

t=±1/2

χtχ
†
t
= χs′χ

†
s
. (H.3.1)

To verify eq. (H.3.1), we used eq. (H.2.5) to write ~σ ·ŝaχt = τat′tχt′ and evaluated the product

of two Pauli matrices:

τass′τ
a
t′t = 2 δstδs′t′ − δss′δtt′ . (H.3.2)

We then use eq. (H.2.6) and the completeness relation given in eq. (C.1.21) to rewrite eq. (H.3.1)

in terms of S
µ
ss′ defined in eq. (H.1.8),

χs′χ
†
s =

1
2

(
δss′ +

1

m

√
p·σSss′ ·σ

√
p·σ
)
. (H.3.3)
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Hence, with both spinor indices in the lowered position,

x(~p, s′)x†(~p, s) =
√
p·σ χs′χ†

s

√
p·σ

= 1
2

√
p·σ

[
δss′ +

1

m

√
p·σSss′ ·σ

√
p·σ
]√

p·σ

= 1
2

[
p·σδss′ +

1

m
p·σSss′ ·σ p·σ

]

= 1
2 (p·σδss′ −mSss′ ·σ) . (H.3.4)

In the final step of eq. (H.3.4), we simplified the product of three dot products by noting that

p·Sa = 0 implies that Sss′ ·σ p·σ = −p·σ Sss′ ·σ. Eq. (H.3.4) is the two-component version of

one of the Bouchiat-Michel formulae. We list below a complete set of Bouchiat-Michel formulae,

which can be derived by similar techniques:

xα(~p, s
′)x†

β̇
(~p, s) = 1

2(p δss′ −mSss′)·σαβ̇ , (H.3.5)

y†α̇(~p, s′)yβ(~p, s) = 1
2(p δss′ +mSss′)·σα̇β , (H.3.6)

xα(~p, s
′)yβ(~p, s) = 1

2

[
mδss′δα

β − [(σ ·Sss′) (σ ·p)]αβ
]
, (H.3.7)

y†α̇(~p, s′)x†
β̇
(~p, s) = 1

2

[
mδss′δ

α̇
β̇ + [(σ ·Sss′) (σ ·p)]α̇β̇

]
. (H.3.8)

If we set s = s′, we recover eqs. (3.1.46)–(3.1.49) as expected. The Bouchiat-Michel formulae can

also be verified directly by using the explicit forms for the two-component spinor wave functions

[eq. (C.1.11)] and the S
µ
ss′ [defined in eq. (H.1.8)]. The latter depends on the explicit form of

the ŝa via eq. (H.1.2).

An equivalent set of Bouchiat-Michel formulae can be obtained by raising and/or lowering

the appropriate free spinor indices using eqs. (2.30) and (2.77):

x†α̇(~p, s′)xβ(~p, s) = 1
2(p δs′s −mSs′s)·σα̇β , (H.3.9)

yα(~p, s
′)y†

β̇
(~p, s) = 1

2(p δs′s +mSs′s)·σαβ̇ , (H.3.10)

yα(~p, s
′)xβ(~p, s) = −1

2

[
mδs′sδα

β + [(σ ·Ss′s) (σ ·p)]αβ
]
, (H.3.11)

x†α̇(~p, s′)y†
β̇
(~p, s) = −1

2

[
mδs′sδ

α̇
β̇ − [(σ ·Ss′s) (σ ·p)]α̇β̇

]
. (H.3.12)

In this derivation, the spin labels in eqs. (H.3.9)–(H.3.12) are reversed relative to those in

eqs. (H.3.5)–(H.3.8) due to eq. (H.2.15). Eight additional relations of the Bouchiat-Michel type

can be obtained by replacing one x-spinor with a y-spinor (or vice versa). Recalling that the x

and y spinors are related by [cf. eq. (3.1.23)],

y(~p, s) = 2sx(~p,−s) , y†(~p, s) = 2sx†(~p,−s) , (H.3.13)
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all possible spinor bilinears can be obtained from eqs. (H.3.5)–(H.3.12).

Note that eqs. (H.3.5)–(H.3.12) also apply to helicity spinor wave functions x(~p, λ) and

y(~p, λ) after replacing s, s′ with λ, λ′ and using the Saµ as defined in eqs. (H.1.12)–(H.1.14).

Strictly speaking, all results involving the spinor wave functions obtained up to this point apply

in the case of a massive spin-1/2 fermion. If we take the massless limit, then the four-vector

S3µ does not exist, as its definition depends on the existence of a rest frame. (In contrast, the

four-vectors S1µ and S2µ do exist in the massless limit.) Nevertheless, massless helicity spinor

wave functions are well defined; explicit forms can be found in eqs. (3.1.37)–(3.1.40). Using

these forms, one can derive the Bouchiat-Michel formulae for a massless spin-1/2 fermion:

xα(~p, λ
′)x†

β̇
(~p, λ) = (12 − λ) δλλ′ p·σαβ̇ , (H.3.14)

y†α̇(~p, λ′)yβ(~p, λ) = (12 + λ) δλλ′ p·σα̇β , (H.3.15)

xα(~p, λ
′)yβ(~p, λ) = −(12 − λ

′)(12 + λ) [(σ ·S−)(σ ·p)]α β , (H.3.16)

y†α̇(~p, λ′)x†
β̇
(~p, λ) = (12 + λ′)(12 − λ) [(σ ·S+)(σ ·p)]

α̇
β̇ , (H.3.17)

where Sµ− and Sµ+ are defined in eq. (H.1.16). The equivalent set of Bouchiat-Michel formulae,

obtained by raising and/or lowering the appropriate free spinor indices, is given by:

x†α̇(~p, λ′)xβ(~p, λ) = (12 − λ) δλλ′ p·σ
α̇β , (H.3.18)

yα(~p, λ
′)y†

β̇
(~p, λ) = (12 + λ) δλλ′ p·σαβ̇ , (H.3.19)

yα(~p, λ
′)xβ(~p, λ) = −(12 + λ′)(12 − λ) [(σ ·S−)(σ ·p)]α

β , (H.3.20)

x†α̇(~p, λ′)y†
β̇
(~p, λ) = (12 − λ

′)(12 + λ) [(σ ·S+)(σ ·p)]α̇ β̇ . (H.3.21)

Eight additional relations of the Bouchiat-Michel type can be obtained by replacing one x-spinor

with a y-spinor (or vice versa), using the results of eq. (H.3.13). As a check, one can verify that

the above results follow from eqs. (H.3.5)–(H.3.12) by replacing s with λ, setting mSaµ = pµ δa3,

applying the mass-shell condition (p2 = m2), and taking the m → 0 limit at the end of the

computation.

We now demonstrate how to use the Bouchiat-Michel formulae to evaluate helicity ampli-

tudes involving two equal mass spin-1/2 fermions. A typical amplitude involving a fermion-

antifermion pair, evaluated in the center-of-mass frame of the pair has the generic structure:

z(~p, λ) Γ z′(−~p, λ′) , (H.3.22)

where z is one of the two-component spinor wave functions x, x†, y, or y†, and Γ is a 2 × 2

matrix (in spinor space) that is either the identity matrix, or is made up of alternating products

of σ and σ. As an illustration, we evaluate:

x†α̇(~p, λ) Γ
α̇β yβ(−~p, λ′) = 2λ′ Γα̇β xβ(−~p,−λ′)x†α̇(~p, λ) = 2λ′ ξλ′(p̂) Γ

α̇βσ0
ββ̇
y†β̇(~p, λ′)x†α̇(~p, λ) ,

(H.3.23)
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where ξλ′(p̂) is defined in eq. (C.3.15), and we have used eqs. (C.3.20) and (3.1.23). We can

now employ the Bouchiat-Michel formula to convert the above result into a trace. By a similar

computation, all expressions of the form of eq. (H.3.22) can be expressed as a trace:

x†α̇(~p, λ) Γ
α̇β yβ(−~p, λ′) = λ′ ξλ′(p̂) Tr

[
Γσ0(mδλλ′ + σ ·Sλλ′ σ ·p)

]
, (H.3.24)

yα(~p, λ) Γαβ̇ x
†β̇(−~p, λ′) = −λ′ ξλ′(p̂) Tr

[
Γσ0(mδλλ′ − σ ·Sλλ′ σ ·p)

]
, (H.3.25)

yα(~p, λ) Γα
β yβ(−~p, λ′) = λ′ ξλ′(p̂) Tr

[
Γσ0(σ ·p δλλ′ +mσ ·Sλλ′)

]
, (H.3.26)

x†α̇(~p, λ) Γ
α̇
β̇ x

†β̇(−~p, λ′) = −λ′ ξλ′(p̂) Tr
[
Γσ0(σ ·p δλλ′ −mσ ·Sλλ′)

]
, (H.3.27)

after making use of eqs. (H.3.5) and (H.3.8). Similarly, there are four additional results that

make use of eqs. (H.3.9) and (H.3.12):

y†α̇(~p, λ) Γ
α̇β xβ(−~p, λ′) = λ′ ξ−λ′(p̂) Tr

[
Γσ0(mδλ′λ − σ ·Sλ′λ σ ·p)

]
, (H.3.28)

xα(~p, λ) Γαβ̇ y
†β̇(−~p, λ′) = −λ′ ξ−λ′(p̂) Tr

[
Γσ0(mδλ′λ + σ ·Sλ′λ σ ·p)

]
, (H.3.29)

xα(~p, λ) Γα
β xβ(−~p, λ′) = −λ′ ξ−λ′(p̂) Tr

[
Γσ0(σ ·p δλ′λ −mσ ·Sλ′λ)

]
, (H.3.30)

y†α̇(~p, λ) Γ
α̇
β̇ y

†β̇(−~p, λ′) = λ′ ξ−λ′(p̂) Tr
[
Γσ0(σ ·p δλ′λ +mσ ·Sλ′λ)

]
. (H.3.31)

For amplitudes involving equal mass fermions (or equal mass antifermions), other combinations

of spinor bilinears appear in which one x-spinor above is replaced by a y-spinor or vice versa.

These amplitudes can be reduced to one of the eight listed above by using eq. (3.1.23).

In the massless limit, one can again put mSaµ = pµδa3, set p2 = m2 and take m→ 0 at the

end of the computation. Alternatively, one can repeat the derivation of eqs. (H.3.24)–(H.3.31)

using the results of eqs. (H.3.14) and (H.3.21). For completeness, we record the end result here.

x†α̇(~p, λ) Γ
α̇β yβ(−~p, λ′) = (12 + λ′)(12 − λ) ξλ′(p̂) Tr(Γσ

0σ ·S− σ ·p) , (H.3.32)

yα(~p, λ) Γαβ̇ x
†β̇(−~p, λ′) = −(12 − λ

′)(12 + λ) ξλ′(p̂) Tr(Γσ
0σ ·S− σ ·p) , (H.3.33)

yα(~p, λ) Γα
β yβ(−~p, λ′) = (12 + λ) δλλ′ ξλ′(p̂) Tr(Γσ

0 σ ·p) , (H.3.34)

x†α̇(~p, λ) Γ
α̇
β̇ x

†β̇(−~p, λ′) = (12 − λ) δλλ′ ξλ′(p̂) Tr(Γσ
0 σ ·p) , . (H.3.35)

The equivalent set of formulae, obtained by raising and/or lowering the appropriate free spinor

indices as before, is given by:

y†α̇(~p, λ) Γ
α̇β xβ(−~p, λ′) = (12 − λ

′)(12 + λ) ξ−λ′(p̂) Tr(Γσ
0σ ·S+ σ ·p) , (H.3.36)

xα(~p, λ) Γαβ̇ y
†β̇(−~p, λ′) = −(12 + λ′)(12 − λ) ξ−λ′(p̂) Tr(Γσ

0σ ·S+ σ ·p) , (H.3.37)

xα(~p, λ) Γα
β xβ(−~p, λ′) = (12 − λ) δλλ′ ξ−λ′(p̂) Tr(Γσ

0 σ ·p) , (H.3.38)

y†α̇(~p, λ) Γ
α̇
β̇ y

†β̇(−~p, λ′) = (12 + λ) δλλ′ ξ−λ′(p̂) Tr(Γσ
0 σ ·p) , . (H.3.39)

The traces are easily evaluated using the results of Appendix B. Here, we apply the above

results to the amplitude for the decay Z0 → f f̄ [see Section 6.2]. The corresponding center-of-

mass frame helicity amplitude is a linear combination of eqs. (H.3.24) and (H.3.25) with Γ = σ
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and Γ = σ, respectively. Evaluating the corresponding terms, we find for Γ = σ,

x†(~p, λ)σµy(−~p, λ′) = 2λ′ ξλ′(p̂)
[
mgµ0δλλ′ + pµS 0

λλ′ − p0S µ
λλ′ − 2m(S µ

S
0 −S

0
S

µ)λλ′
]
,

(H.3.40)

where we have used eq. (H.1.10) to replace the term with the Levi-Civita tensor. Similarly, we

calculate for Γ = σ,

y(~p, λ)σµx†(−~p, λ′) = 2λ′ ξλ′(p̂)
[
−mgµ0δλλ′ + pµS 0

λλ′ − p0S µ
λλ′ + 2m(S µ

S
0 −S

0
S

µ)λλ′
]
.

(H.3.41)

Eqs. (H.3.40) and (H.3.41) provide explicit forms for the Z0 → f f̄ decay helicity amplitudes

defined in eqs. (6.2.3) and (6.2.4).

The above method is not applicable if the two fermions have unequal mass. In order

to compute the helicity amplitudes of the form given by eq. (H.3.22) for unequal masses, a

generalization of the above techniques is required. Some methods for four-component spinor

wave functions have been proposed in ref. [316]. We leave it as an exercise for the reader to

translate these techniques so that they are applicable to helicity amplitudes expressed in terms

of two-component spinor wave functions. An alternative approach, which is applicable to the

computation of helicity amplitudes for processes involving multi-fermion final states of arbitrary

mass, is reviewed in Appendix I.1.

H.4 Four-component Bouchiat-Michel formulae

Using the results of Appendix G, the translation of the results of Appendix H.3 into four-

component spinor notation is straightforward. First, we consider a massive spin-1/2 fermion.

Eqs. (H.2.8)–(H.2.11) yield [285]:

γ5/S
a u(~p, s′) = τass′ u(~p, s) , γ5/S

a v(~p, s′) = τas′s v(~p, s) , (H.4.1)

ū(~p, s′) γ5/S
a = τass′ ū(~p, s) , v̄(~p, s′) γ5/S

a = τas′s v̄(~p, s) . (H.4.2)

In the case of a = 3, eqs. (H.4.1) and (H.4.2) reduce to those of eqs. (G.4.18) and (G.4.19).

The four-component Bouchiat-Michel formulae [112,316,317] can be obtained from eqs. (H.3.5)–

(H.3.12):

u(~p, s′)ū(~p, s) = 1
2

[
δss′ + γ5γµS

µ
ss′

]
(/p+m) , (H.4.3)

v(~p, s′)v̄(~p, s) = 1
2

[
δs′s + γ5γµS

µ
s′s

]
(/p−m) , (H.4.4)

where S
µ
ss′ ≡ Saµτass′ . As expected, the above results for s = s′ correspond to the spin projection

operators given in eqs. (G.4.20) and (G.4.21). Related formulae involving products of u and v-

spinors can be obtained by using [cf. eq. (G.4.15)]:

v(~p, s) = −2sγ5u(~p,−s) , u(~p, s) = 2sγ5v(~p,−s) . (H.4.5)
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Eqs. (H.4.1)–(G.4.15) also apply to helicity u and v-spinors, after replacing s, s′ with λ, λ′

and using the Sa as defined in eq. (H.1.14). The four-component versions of eqs. (C.3.20)–

(C.3.23) yield:

u(−p , −λ) = ξλ(p̂) γ
0 u(p , λ) , v(−p , −λ) = ξλ(p̂) γ

0 v(p , λ) , (H.4.6)

ū(−p , −λ) = ū(p , λ) γ0 ξ−λ(p̂) , v̄(−p , −λ) = v̄(p , λ) γ0 ξλ(p̂) , (H.4.7)

where the phase ξλ(p̂) was defined in eq. (C.3.12). In order to consider the massless limit, one

must employ helicity spinors, as discussed in Appendix H.3. For a = 1, 2, eqs. (H.4.1) and

(H.4.2) apply in the m → 0 limit as written. The corresponding massless limit for the case of

a = 3 is smooth and results in eq. (G.4.22). Similarly, the massless limit of the Bouchiat-Michel

formulae for helicity spinors can be obtained by setting mSaµ = pµ δa3, applying the mass-shell

condition (p2 = m2), and taking the m→ 0 limit at the end of the computation. The end result

is given by

u(p, λ′)ū(p, λ) = 1
2 (1 + 2λγ5) /p δλλ′ +

1
2γ5[/S

1τ1λλ′ + /S2τ2λλ′ ] /p , (H.4.8)

v(p, λ′)v̄(p, λ) = 1
2 (1− 2λγ5) /p δλ′λ +

1
2γ5[/S

1τ1λ′λ + /S2τ2λ′λ] /p . (H.4.9)

As expected, when λ = λ′, we recover the helicity projection operators for massless spin-1/2

particles given in eqs. (G.4.24) and (G.4.25).

As before, we can use the Bouchiat-Michel formulae to evaluate helicity amplitudes involving

two equal mass spin-1/2 fermions. A typical amplitude involving a fermion-antifermion pair,

evaluated in the center-of-mass frame of the pair, has the generic structure:

w(~p, λ) Γw′(−~p, λ′) , (H.4.10)

where w is either a u or v spinor, w′ is respectively either a v or u spinor, and Γ is a product of

Dirac gamma matrices. For example,

ū(~p, λ) Γ v(−~p, λ′) = −2λ′ū(~p, λ) Γ γ5 u(−~p,−λ′) = −2λ′ ξλ′(p̂) ū(~p, λ) Γ γ5 γ0 u(~p, λ′) ,
(H.4.11)

where we have used the results of eqs. (G.4.15) and (H.4.6). We can now employ the Bouchiat-

Michel formula to convert the above result into a trace. By a similar computation, all expressions

of the form of eq. (H.4.10) can be expressed as a trace:

ū(~p, λ) Γ v(−~p, λ′) = −λ′ ξλ′(p̂)Tr
[
Γγ5γ

0(δλλ′ + γ5γµS
µ
λλ′)(/p +m)

]
, (H.4.12)

v̄(~p, λ) Γu(−~p, λ′) = λ′ ξ−λ′(p̂)Tr
[
Γγ5γ

0(δλ′λ + γ5γµS
µ
λ′λ)(/p−m)

]
. (H.4.13)

These results are the four-component analogues of eqs. (H.3.24)–(H.3.27) and eqs. (H.3.28)–

(H.3.31), respectively. For amplitudes that involve a pair of equal mass fermions [or equal mass
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antifermions], w and w′ in eq. (H.4.10) are both u-spinors [or v-spinors]. Using eq. (G.4.15),

these amplitudes can then be evaluated using the results of eqs. (H.4.12) and (H.4.13) above.

In the massless limit, one can again put mSaµ = pµδa3, set p2 = m2 and take m→ 0 at the

end of the computation. Alternatively, one can repeat the derivation of eqs. (H.4.12)–(H.4.13)

using the results of eqs. (H.4.8) and (H.4.9). For completeness, we record the end result here.

ū(~p, λ) Γ v(−~p, λ′) = ξλ′(p̂)

{
1
2δλλ′ Tr[Γγ

0(1 + 2λγ5)/p] + λ′ Tr[Γγ0(/S1τ1λλ′ + /S2τ2λλ′) /p]

}
,

(H.4.14)

v̄(~p, λ) Γu(−~p, λ′) = ξ−λ′(p̂)

{
1
2δλ′λ Tr[Γγ0(1− 2λγ5)/p]− λ′ Tr[Γγ0(/S1τ1λ′λ + /S2τ2λ′λ) /p]

}
.

(H.4.15)

As an example, we consider once again the decay Z0 → f f̄ . The decay amplitude is equal

to eq. (H.4.12), where Γ is a linear combination of 1
2γ

µ(1− γ5) and 1
2γ

µ(1+ γ5). Evaluating the

corresponding traces yields:

ū(~p, λ) 1
2γ

µ(1− γ5) v(−~p, λ′) = 2λ′ ξλ′(p̂)
[
mgµ0δλλ′ + pµS 0

λλ′ − p0S µ
λλ′ + iǫ0µνρ(Sλλ′)νpρ

]
,

(H.4.16)

ū(~p, λ) 1
2γ

µ(1 + γ5) v(−~p, λ′) = 2λ′ ξλ′(p̂)
[
−mgµ0δλλ′ + pµS 0

λλ′ − p0S µ
λλ′ − iǫ0µνρ(Sλλ′)νpρ

]
.

(H.4.17)

Using eq. (H.1.10), we see that eqs. (H.4.16) and (H.4.17) reproduce exactly the results of

eqs. (H.3.40) and (H.3.41), respectively.

Finally, we note that if the two fermions do not have the same mass, then the method

presented above is not applicable. However, generalizations of the above method exist in the

literature that can be employed to evaluate helicity amplitudes of the form of eq. (H.4.10) for

unequal mass fermions; see, e.g., ref. [316]. An alternative approach due to Hagiwara and

Zeppenfeld [105] is reviewed in Appendix I.1.

Appendix I: Helicity amplitudes and the spinor helicity method

In Appendix H, we showed how to use the Bouchiat-Michel formulae (with versions applicable to

both two-component and four-component spinor wave functions) to construct helicity amplitudes

for processes with two initial state and two final state equal mass fermions (or a fermion-

antifermion pair) in the center-of-mass frame of the two fermions. For practical applications,

it is important to extend these techniques to allow for final states with an arbitrary number of

particles. The techniques should be powerful enough to allow for pairs of fermions of unequal

mass, and both massless and massive spin-1 particles. Ideally, these techniques should produce

simple analytic results (when possible) and yield efficient numerical algorithms for the evaluation

of the helicity amplitudes.
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DHM Formalism HZ Formalism

xα(p, λ) u(p, λ)−

xα(p, λ) v†(p, λ)+

x†α̇(p, λ) v(p, λ)+

x†α̇(p, λ) u†(p, λ)−

yα(p, λ) v(p, λ)−

yα(p, λ) u†(p, λ)+

y†α̇(p, λ) u(p, λ)+

y†α̇(p, λ) v†(p, λ)−

p·σ (/p)+

p·σ (/p)−

σµ σµ+

σµ σµ−

PR P+

PL P−

λ = ±1
2 λ = ±1

χλ(−ẑ) −χλ(−ẑ)

Table I.1.1: Translation between our notation (denoted by DHM) and the notation of Hagiwara
and Zeppenfeld (HZ) [105]. The sign convention governing the definition of v(p, λ)± is opposite
to that of HZ (cf. footnote 150).

I.1 The helicity amplitude technique of Hagiwara and Zeppenfeld

One method for computing helicity amplitudes for multi-particle final states that is easily

amenable to numerical analysis was developed by Hagiwara and Zeppenfeld (HZ) [105]. The HZ

formalism was subsequently employed in refs. [318,319] in developing a fast numerical algorithm

for the computation of multi-parton processes. In this section, we demonstrate how our two-

component formalism (denoted by DHM) can be connected to theirs. In particular, we present

a translation between the two formalisms in Table I.1.1.

After removing the propagator factors, an arbitrary tree amplitude with external fermions

can be expressed in terms of a four-component fermion string

ΨiPτ /a1/a2 . . . /anΨj , τ = ±1 , (I.1.1)
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where Ψj is a four-component spinor wave function u(pj , λj) or v(pj ,−λj),150 and P± = 1
2(1±γ5)

are the chiral projection operators. Furthermore, /ak ≡ γµa
µ
k where ak represents an arbitrary

Lorentz four-vector, which can be a four-momentum pµk , a vector boson wave function ǫµ(pk, λk),

an axial vector (e.g., ǫµνρσpkνpmρpnσ) or another fermion string with uncontracted Lorentz

indices (e.g., Ψmγ
µΨn).

In order to rewrite the fermion string, eq. (I.1.1), in terms of two-component spinors, HZ

decomposes the four-component spinors as follows:

Ψj ≡


 (ψj)−

(ψj)+


 , u(pj , λj) ≡


 u(pj , λj)−

u(pj , λj)+


 , v(pj , λj) ≡


 v(pj, λj)−

v(pj, λj)+


 . (I.1.2)

Comparing with eqs. (G.4.11) and (G.4.12), the corresponding expressions in our notation are

given in Table I.1.1. Note that λ = ±1 in the notation of HZ, whereas in our notation (which

we follow below) λ = ±1
2 .

The four-component fermion string is then replaced by the two-component fermion string:

ΨiPτ /a1/a2 . . . /anΨj = (ψi)
†
τ (/a1)τ (/a2)−τ . . . (/an)−δnτ (ψj)−δnτ , τ = ±1 , where δn ≡ (−1)n .

(I.1.3)

In the notation of HZ,

(/a)± = aµσ
µ
± , (I.1.4)

where σµ+ ≡ σµ and σµ− ≡ σµ. In eq. (I.1.3), the helicity labels are suppressed; more explicitly,

(ψk)τ ≡ ψk(pk , λk)τ = u(pk , λk)τ or v(pk , −λk)τ . (I.1.5)

This convention of HZ (note the −λk argument of v) allows one to write simple generic formulae

in terms of (ψ)± that are applicable to both u± and v±.

Using the results of Table I.1.1, one can verify that eq. (I.1.3) is covariant with respect

to dotted and undotted indices. That is, the sign τ of ψ†
i must match the sign of the first σ-

matrix in the string (/a1)τ (/a2)−τ . . . (/an)−δnτ . The signs of the sigma matrices within this string

alternate (either +−+− . . . or −+−+ . . . in the case of τ = +1 or −1, respectively). Finally,
the sign of the last σ-matrix in the string [which must be equal to −δnτ in light of the previous

statement] must match the sign of ψj as indicated.

As noted above, it is possible that one of the (/ai)τ could be of the form σµτ multiplied

by another fermion string with a free µ-index. One can uncouple the two fermion strings by

employing the Fierz identities given by eqs. (2.66)–(2.68). For example,

[(u1)
†
−(/a1)−σ

µ
+(/a2)−(u2)−][(u3)

†
−(/a3)−σ+µ(/a4)−(u4)−]

= [(u1)
†
−(/a1)−(/a3)+(v3)+][(v4)

†
+(/a4)+(/a2)−(u2)−] , (I.1.6)

150HZ defines v(p, λ) = CūT(p, λ), where C = iγ2γ0, which differs by an overall minus sign from the conventions
employed in this review [cf. eq. (G.1.20)]. In this section, we will modify the HZ results in order to be consistent
with our sign convention.
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which is easily derived after translating to the DHM notation.151 As a result, the helicity tree

amplitude for any process can be expressed as the product of uncoupled strings of two-component

fermion spinors

FS = (ψi)
†
τ (/a1)τ (/a2)−τ . . . (/an)−δnτ (ψj)−δnτ . (I.1.7)

To evaluate the fermion string FS, we employ the explicit forms for the two-component

helicity spinor wave functions given in eqs. (C.3.4)–(C.3.7), which can be rewritten as

ψ(pk, λk)τ = Ck ωτλk(~p)χλk
(p̂k) , (I.1.8)

where, following the convention of eq. (I.1.5),

Ck =





1 for (ψk)τ = u(pk, λk)τ ,

2λkτ for (ψk)τ = v(pk,−λk)τ ,
τ = ±1, λk = ±1/2 , (I.1.9)

and ωλ(~p) ≡ (E+2λ|~p|)1/2 for λ = ±1/2. Hence, the fermion string [eq. (I.1.7)] is given by [105]

FS = CiCj ωτλi(~pi)ω−δnτλj (~pj)S(pi, a1, a2, . . . , an, pj)
τ
λiλj , (I.1.10)

where the function S is defined as

S(pi, a1, a2, . . . , an, pj)
τ
λiλj
≡ χ†

λi
(p̂i)

[
n∏

k=1

(/ak)−δkτ

]
χ
λj
(p̂j) , (I.1.11)

where δk ≡ (−1)k. In the absence of the /a±τ factors, we define

S(pi , pj)λiλj ≡ T (p̂i , p̂j)2λi,2λj = χ†
λi
(p̂i)χλj (p̂j) , (I.1.12)

where the T (p̂i , p̂j)2λi,2λj are proportional to the (massless) spinorial products introduced by

Kleiss [98] [cf. eqs. (I.2.22) and (I.2.23)].

To evaluate S, we assume that the four-vectors aµk are real.152 Then, we may employ the

following identity:153

(/a)τ =
∑

τ ′=±

[
a0 − τ ′τ |~a|

]
χτ ′/2(â)χ

†
τ ′/2(â) , (I.1.13)

where χτ ′/2(â) is a two-component helicity spinor with three-momentum ~a. Using eq. (I.1.13)

in eq. (I.1.11), we end up with the desired expression:

S(pi, a1, a2, . . . , an, pj)
τ
λiλj =

[
n∏

k=1

∑

τk=±

[
a0k + τkδkτ |~ak|

]
]
T (p̂i, â1)2λi,τ1T (â1, â2)τ1τ2

× · · ·T (ân−1, ân)τn−1τnT (ân, p̂j)τn,2λj . (I.1.14)

151Here, we differ from HZ, who employ a Fierz identity that is not covariant with respect to the dotted and
undotted indices [note the comment below eq. (2.53)]. Thus, eq. (I.1.6) differs from the result obtained in
eq. (3.17b) of HZ.
152In the case of complex aµ, one should decompose aµ into its real and imaginary parts and evaluate separately

the real and imaginary parts of S.
153To obtain eq. (I.1.13), we make use of eq. (3.1.43) applied to helicity spinors: χλχ

†
λ
= 1

2
(1 + 2λ~σ·p̂).
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All that remains is to evaluate the spinorial product T (â, b̂)τa τb (τa, τb = ±1) for arbitrary
unit three-vectors â and b̂. Two properties of the spinorial product T (â , b̂)τa,τb are noteworthy.

First, as this product is a scalar, it follows that T (â , b̂)∗τa,τb = T (â , b̂)†τa,τb . Hence, eq. (I.1.12)

implies that

T (â, b̂)τa τb = T (b̂, â)∗τb τa . (I.1.15)

Second, we use eq. (C.1.8) to write:

T (â, b̂)τa τb = χ†
τa/2

(ẑ) exp(iγaσ
3/2) exp(iθaσ

2/2) exp(iφaσ
3/2)

× exp(−iφbσ3/2) exp(−iθbσ2/2) exp(−iγbσ3/2)χτb/2(ẑ) . (I.1.16)

Complex conjugating this result, and using the fact that χ(ẑ), σ1 and σ3 are real and σ2 is pure

imaginary,

T (â, b̂)∗τa τb = τaτb χ
†
−τa/2(ẑ)σ

2 exp(−iγaσ3/2) exp(iθaσ2/2) exp(−iφaσ3/2)

× exp(iφbσ
3/2) exp(−iθbσ2/2) exp(iγbσ3/2)σ2 χ−τb/2(ẑ) , (I.1.17)

after using eq. (C.1.22). Since σ2 anticommutes with σ3, we end up with:

T (â, b̂)∗τa τb = τaτb χ
†
−τa/2(ẑ) exp(iγaσ

3/2) exp(iθaσ
2/2) exp(iφaσ

3/2)

× exp(−iφbσ3/2) exp(−iθbσ2/2) exp(−iγbσ3/2)χ−τb/2(ẑ)

= τaτb T (â, b̂)−τa ,−τb . (I.1.18)

Since τa, τb = ±1, it follows that

T (â, b̂)−τa,−τb = τa τb T (â, b̂)
∗
τa τb

. (I.1.19)

Using eqs. (I.1.15) and (I.1.19), it is sufficient to give explicit forms for only two of the spinorial

products [99,105]. Eq. (I.1.16) yields:

T (â, b̂)++ = ei(φa−φb+γa−γb)/2 cos
θa
2
cos

θb
2

+ e−i(φa−φb−γa+γb)/2 sin
θa
2
sin

θb
2
, (I.1.20)

T (â, b̂)−+ = e−i(φa−φb+γa+γb)/2 cos
θa
2
sin

θb
2
− ei(φa−φb−γa−γb)/2 sin

θa
2
cos

θb
2
, (I.1.21)

where (θp, φp) are the polar and azimuthal angles of p̂ (for p̂ = â and b̂, respectively). In the

case where â and/or b̂ are parallel to the negative z-axis, we employ the convention of eq. (C.1.7)

and choose the corresponding azimuthal angle equal to π.154 Note that HZ employ a convention

for their spinor wave functions [cf. eq. (C.1.8)] in which γ = −φ, although the convention in

which γ = 0 yields a slightly more symmetrical form for the spinorial products.

154This convention yields a value of χλ(−ẑ) that is opposite in sign to the convention adopted by HZ.
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Eqs. (I.1.7), (I.1.10) and (I.1.11) can be written in a form that is reminiscent of the results

obtained in Appendix H.3. For example, using eqs. (C.3.4)–(C.3.7),

x†α̇(~p, λ) Γ
α̇β yβ(~p

′,−λ′) = −2λ′ω−λ(~p)ω−λ′(~p
′)χ†

λ(p̂)Γχλ′(p̂
′) , (I.1.22)

yα(~p, λ) Γαβ̇ x
†β̇(~p ′,−λ′) = 2λ′ωλ(~p)ωλ′(~p

′)χ†
λ(p̂)Γχλ′(p̂

′) , (I.1.23)

yα(~p, λ) Γα
β yβ(~p

′,−λ′) = −2λ′ωλ(~p)ω−λ′(~p
′)χ†

λ(p̂)Γχλ ′(p̂′) , (I.1.24)

x†α̇(~p, λ) Γ
α̇
β̇ x

†β̇(~p ′,−λ′) = 2λ′ω−λ(~p)ωλ′(~p
′)χ†

λ(p̂)Γχλ′(p̂
′) , (I.1.25)

where Γ is a product of alternating σ and σ matrices. The spinor index structure determines

the identity of the first and last matrix (e.g., Γα̇β̇ indicates a string of matrices that begins

with a σ and ends with a σ, etc.). By suitable interchanges of x and y, twelve additional

equations of similar type may be written. Note that χ†
λΓχλ′ [appearing on the right-hand side of

eqs. (I.1.22)–(I.1.25)] corresponds precisely to the S(p, a1, a2, . . . , an, p
′)τλλ′ of eq. (I.1.11), where

the four possible (τ , δn) combinations are in one-to-one correspondence with the four possible

spinor index structures of Γ. If ~p ′ = −~p, then one should recover eqs. (H.3.24)–(H.3.27). Thus,

the HZ method provides a powerful generalization of the helicity amplitude methods derived in

Appendix H.3.

I.2 The spinor helicity method

In many practical calculations, the masses of the fermions can be neglected. In this case

the computation of multi-particle helicity amplitudes simplifies considerably. In this section,

we give a brief introduction to the spinor helicity method; for a review, see refs. [320, 321].

The spinor helicity method is a powerful technique for computing helicity amplitudes for multi-

particle processes involving massless spin-1/2 and spin-1 particles. Although initially applied to

tree-level processes, more general techniques have also been developed that are applicable to one-

loop (and multiloop) diagrams [322]. Rules for computing dimensionally regularized amplitudes

within the framework of the spinor helicity method have been given by ref. [323]. The spinor

helicity techniques are ideal for QCD where light quark masses can almost always be neglected.

Generalizations of these methods that incorporate massive spin-1/2 and spin-1 particles exist,

although they tend to be quite cumbersome [324, 325]. A Mathematica implementation of the

spinor helicity formalism can be found in ref. [326]. In this section, we restrict the discussion to

the massless case.

The spinor helicity technique described below is based on a formalism developed by Xu,

Zhang and Chang [101] (denoted henceforth by XZC), which is a modification of techniques

established by the CALKUL collaboration [327]. The XZC formalism (which was also inde-

pendently developed in refs. [99, 328]) is based on the four-component spinor formalism. Using
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eq. (G.4.23), XZC introduce a very useful notation for massless spinors

|p±〉 ≡ u(p,±1
2 ) = v(p,∓1

2) , (I.2.1)

〈p±| ≡ ū(p,±1
2 ) = v̄(p,∓1

2) . (I.2.2)

Using these spinor wave functions, they define two non-trivial (massless) spinor products (which

are equivalent to the spinorial products introduced by Kleiss [98]):155

〈p q〉 ≡ 〈p− |q+〉 = ū(p,−1
2)u(q,+

1
2 ) , (I.2.3)

[p q] ≡ 〈p+ |q−〉 = ū(p,+1
2)u(q,−1

2 ) . (I.2.4)

The ± notation specified by the bra and ket indicates the chirality (i.e. the eigenvalue of γ5) of

the corresponding four-component spinor [cf. eq. (G.4.22)].

However, the two-component spinor formalism is especially economical in the case of mass-

less spin-1/2 fermions. Hence, we shall reformulate the XZC approach using two-component

spinor notation. First, we consider the explicit forms for the two-component helicity spinor

wave functions [given by eqs. (3.1.37)–(3.1.40)] in the massless limit:

xα(~p,−1
2 ) = yα(~p,

1
2) = (2E)1/2 χ−1/2(p̂) , xα(~p,−1

2) = yα(~p, 12) = (2E)1/2 χ†
1/2(p̂) , (I.2.5)

x†α̇(~p,−1
2 ) = y†α̇(~p, 12) = (2E)1/2 χ1/2(p̂) , x†α̇(~p,−1

2 ) = y†α̇(~p,
1
2) = (2E)1/2 χ†

−1/2(p̂) ,(I.2.6)

where E = |~p|. For all other choices of helicities, the corresponding helicity spinor wave functions

vanish. Hence, we define:156

|p+〉 = y†α̇(~p, 12) = x†α̇(~p,−1
2) , 〈p+| = yα(~p, 12 ) = xα(~p,−1

2) , (I.2.7)

|p−〉 = xα(~p,−1
2 ) = yα(~p,

1
2) , 〈p−| = x†α̇(~p,−1

2) = y†α̇(~p,
1
2 ) . (I.2.8)

The |p±〉 and 〈p±| satisfy the massless Dirac equation [cf. eqs. (3.1.9)–(3.1.12)]:

p·σ± |p±〉 = 0, 〈p±| p·σ± = 0 , (I.2.9)

where σ+ ≡ σ and σ− ≡ σ as indicated in Table I.1.1. The above and the following equations

should each be read as two separate equations corresponding to the upper and lower set of signs,

155Note that 〈p− |q−〉 = 〈p+ |q+〉 = 0 due to PLPR = PRPL = 0.
156The association of undotted and dotted indices in eqs. (I.2.7) and (I.2.8) is a consequence of our convention

for the Dirac gamma matrices given in Appendix G [cf. eq. (G.1.2)]. Note that in this convention, the left-handed
[right-handed] projection operator PL [PR] projects out the lowered undotted [raised dotted] index components
of the four-component spinor [cf. eq. (G.1.6)]. However, the reader is warned that in the literature on the spinor
helicity method, one almost always finds |p+〉 associated with a lowered undotted index and |p−〉 associated
with an upper dotted index. This is due to a different convention for the sigma matrices, such as the Wess and
Bagger definition given in eqs. (A.11) and (A.12). Numerically, this is equivalent to a convention for the Dirac
gamma matrices in which σµ and σµ are interchanged in eq. (G.1.2), resulting in an overall change of sign in
the matrix representation of γ5. As a result, in this latter convention the lowered undotted [raised dotted] index
components are associated with positive [negative] chirality. For an historical perspective, see the discussion
following eq. (A.12).
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respectively. The following properties are also noteworthy:

|p±〉 〈p±| = p·σ∓ , (I.2.10)

〈p±|σµ± |p±〉 = 2pµ , (I.2.11)

〈p± |q∓〉 = −〈q ± |p∓〉 , (I.2.12)

〈p+|σµ+ |q+〉 = 〈q−|σµ− |p−〉 , (I.2.13)

〈p±|σµ±σν∓ |q∓〉 = −〈q±|σν±σµ∓ |p∓〉 . (I.2.14)

Note that eqs. (I.2.9)–(I.2.14) are covariant with respect to the undotted and dotted spinor

indices. Eqs. (I.2.10) and (I.2.11) follow from eqs. (3.1.54) and (3.1.55). For example,

〈p+|σµ+ |p+〉 = yα(~p, 12)σ
µ

αβ̇
y†β̇(~p, 12) = σµ

αβ̇
y†β̇(~p, 12)y

α(~p, 12) = Tr (σµp·σ) = 2pµ , (I.2.15)

and similarly for 〈p−|σµ− |p−〉. Eqs. (I.2.12)–(I.2.14) follow immediately from eqs. (2.58)–(2.62).

Eqs. (I.2.13) and (I.2.14) generalize easily to the case of a product of an even and odd number

of σ/σ matrices. For any positive integer n,

〈p+|σµ1+ σµ2− · · · σ
µ2n−1
+ |q+〉 = 〈q−|σµ2n−1

− · · · σµ2+ σµ1− |p−〉 , (I.2.16)

〈p±|σµ1± σµ2∓ · · · σµ2n∓ |q∓〉 = −〈q±|σµ2n± · · · σµ2± σµ1∓ |p∓〉 . (I.2.17)

Spinor products can be formed from the bras and kets in the usual way and satisfy:

〈p± |q∓〉∗ = 〈q ∓ |p±〉 , (I.2.18)
〈
p± |σµ±|q±

〉∗
=
〈
q ± |σµ±|p±

〉
, (I.2.19)

where we have used the fact that the σµ± are hermitian. Covariance with respect to the undotted

and dotted spinors allows only two possible spinor products:157

〈p q〉 ≡ 〈p− |q+〉 = x†(~p,−1
2 ) y

†(~q, 12) , (I.2.20)

[p q] ≡ 〈p+ |q−〉 = y(~p, 12)x(~q,−1
2) . (I.2.21)

In particular, the products 〈p+ |q+〉 and 〈p− |q−〉 never arise in a computation using two-

component spinor notation. In terms of the spinorial products defined in eq. (I.1.12),

〈p q〉 ≡ 〈p− |q+〉 = (2Ep)
1/2(2Eq)

1/2T (p̂ , q̂)−+ , (I.2.22)

[p q] ≡ 〈p+ |q−〉 = (2Ep)
1/2(2Eq)

1/2T (p̂ , q̂)+− , (I.2.23)

157Since we wish to preserve the definition of the spinor products given in eq. (I.2.3), 〈p q〉 is a sum over dotted
indices and [p q] is a sum over undotted indices in our two-component spinor conventions. This is to be contrasted
with most of the literature on the spinor helicity method, in which 〈p q〉 is written as a sum over undotted indices
and [p q] as a sum over dotted indices. The origin of this difference is explained in footnote 156.
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where Ep = |~p| and Eq = |~q|. Explicit forms for T (p̂ , q̂)−+ and T (p̂ , q̂)+− = −T (p̂ , q̂)∗−+ can

be obtained from eq. (I.1.21). Using eqs. (I.1.15) and (I.1.19) [or equivalently, using eqs. (I.2.12)

and (I.2.18)], the spinor products satisfy the following relations:

〈p q〉 = −〈q p〉 , (I.2.24)

[p q] = −[q p] , (I.2.25)

〈p q〉∗ = −[p q] . (I.2.26)

One immediate consequence of the above results is:

〈p p〉 = 〈p− |p+〉 = 0 , (I.2.27)

[p p] = 〈p+ |p−〉 = 0 . (I.2.28)

We next compute the absolute square of the spinor product:

| 〈p q〉 |2 = x†α̇(~p,−1
2 ) y

†α̇(~q, 12 )xα(~p,−1
2) y

α(~q, 12) = xα(~p,−1
2 )x

†
α̇(~p,−1

2 ) y
†α̇(~q, 12 ) y

α(~q, 12)

= p·σαα̇ q ·σα̇α = pµqν Tr(σµσν) = 2p·q . (I.2.29)

Using this result and eq. (I.2.26) yields

| 〈p q〉 |2 = |[p q]|2 = 2p·q , (I.2.30)

which indicates that the spinor products are roughly the square roots of the corresponding dot

products. One other noteworthy relation is:

〈p1 p2〉 [p2 p3] 〈p3 p4〉 [p4 p1] = Tr (σ ·p1 σ ·p2 σ ·p3 σ ·p4)

= 2(gµνgρκ − gµρgνκ + gµκgνρ + iǫµνρκ)p
µ
1p

ν
2p
ρ
3p
κ
4 , (I.2.31)

where the trace has been evaluated using eq. (B.2.26). Note that the first line of eq. (I.2.31)

immediately follows from eqs. (3.1.54) and (3.1.55) after plugging in the definition of the spinor

products.

In Appendix I.1, we showed that a fermion string can be expressed in terms of products of

the spinorial products T [cf. eq. (I.1.14)]. When applied to massless spinors, eq. (I.2.30) indicates

that the square of the helicity amplitude of a multi-fermion scattering process can be expressed

in terms of products of dot products of pairs of fermion momenta. If more than one diagram

contributes to a helicity amplitude, then it is often possible to combine the contributions after

a rearrangement of momenta via the Fierz identities. Using eqs. (2.64)–(2.68), it follows that:

〈p1 p2〉 〈p3 p4〉 = 〈p1 p3〉 〈p2 p4〉+ 〈p1 p4〉 〈p3 p2〉 , (I.2.32)

[p1 p2] [p3 p4] = [p1 p3] [p2 p4] + [p1 p4] [p3 p2] , (I.2.33)
〈
p1 + |σµ+|p2+

〉
〈p3 + |σ+µ|p4+〉 = 2 [p1 p3] 〈p4 p2〉 , (I.2.34)

〈
p1 − |σµ−| p2−

〉
〈p3 − |σ−µ|p4−〉 = 2 〈p1 p3〉 [p4 p2] , (I.2.35)

〈
p1 + |σµ+|p2+

〉
〈p3 − |σ−µ|p4−〉 = 2 [p1 p4] 〈p3 p2〉 . (I.2.36)
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Eqs. (I.2.32) and (I.2.33) are often called the Schouten identities, as they follow from eq. (2.26).

It is desirable to extend the spinor helicity formalism to multi-particle processes involving

massless fermions and massless spin-1 bosons. In particular, XZC developed a simple technique

for expressing the squares of the corresponding helicity amplitudes in terms of ratios of products

of dot products. Their trick was to introduce a convenient expression for the massless spin-1

polarization vector in terms of products of massless spin-1/2 spinor wave functions. Before

exhibiting their result, we provide a brief review of spin-1 polarization vectors in the helicity

basis.

We first consider a massless spin-1 particle moving in the z-direction with four-momentum

kµ = E(1 ; 0 , 0 , 1). The textbook expression for the helicity ±1 polarization vectors of a

massless spin-1 boson is given by [254–256,329]:

εµ(ẑ,±1) = 1√
2
(0 ; ∓1 , −i , 0) . (I.2.37)

Note that the εµ(ẑ, λ) are normalized eigenvectors of the spin-1 operator ~S·ẑ,

( ~S·ẑ)µν ε
ν(ẑ, λ) = λ εµ(ẑ, λ) , (I.2.38)

where Si ≡ 1
2ǫ
ijkSjk, and the matrix elements of the 4× 4 matrices Sjk are given by eq. (2.9).

If we transform εµ(ẑ, λ) by employing a three-dimensional rotation R such that k̂ = R ẑ,

then we can obtain the polarization vector for a massless spin-1 boson of energy E moving in

the direction k̂ = (sin θ cosφ , sin θ sinφ , cos θ). That is,

εµ(k̂, λ) = Λµν(φ , θ , γ) ε
ν(ẑ, λ) , (I.2.39)

where

Λ0
0 = 1 , Λi0 = Λ0

i = 0 , and Λij = Rij(φ , θ , γ) , (I.2.40)

and R(φ , θ , γ) is the rotation matrix introduced in eq. (C.1.4). A simple computation yields:

εµ(k̂,±1) = 1√
2
e∓iγ (0 ; ∓ cos θ cosφ+ i sinφ , ∓ cos θ sinφ− i cosφ , ± sin θ) . (I.2.41)

Note that εµ(k̂,±1) depends only on the direction of ~k and not on its magnitude E = |~k|.
One can easily check that the εµ(k̂,±1) are normalized eigenstates of ~S·k̂ with corresponding

eigenvalues ±1.
Similar to the corresponding discussion in Appendix C for the spin-1/2 spinor wave func-

tions, the Euler angle γ is arbitrary. In the literature, one typically finds conventions where

γ = −φ [36, 254,255] or γ = 0 [256], and we will consider both possibilities below.

Although we will not need it here, the expressions given by eqs. (I.2.37) and (I.2.41) also

apply in the case of a massive spin-1 particle. In addition, there is a helicity λ = 0 polarization

vector which depends on the magnitude of the momentum as well as its direction:

εµ(|~k|ẑ , 0) = (|~k|/m ; 0 , 0 , E/m) , (I.2.42)
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where E = (|~k|2+m2)1/2. One can use eq. (I.2.39) to obtain the helicity zero polarization vector

for a massive spin-1 particle moving in an arbitrary direction

εµ(~k , 0) =
1

m

(
|~k| ; E sin θ cosφ , E sin θ sinφ , E cos θ

)
. (I.2.43)

Note that both the massless and massive spin-1 polarization vectors satisfy:158

ǫµ(k , λ)∗ = (−1)λǫµ(k , −λ) . (I.2.44)

One can check that the ǫµ(k, λ) also satisfies the standard conditions for a valid polarization

four-vector:

k ·ǫ(k , λ) = 0 , ǫ(k , λ)·ǫ(k , λ′)∗ = −δλλ′ . (I.2.45)

If the spin-1 boson three-momentum is −~k, then its polarization vector can be obtained

from eqs. (I.2.41) and (I.2.43) by taking θ → π − θ and φ→ φ+ π. It can also be derived from

eqs. (I.2.39) and (I.2.40) by making use of the spin-1 analogue of eq. (C.3.9),

R(φ+ π , π − θ , γ(−k̂)) = R(φ , θ , γ(k̂))R(ẑ,−γ(k̂)− γ(−k̂))R(x̂, π) , (I.2.46)

where we have exhibited the possible dependence of γ on the direction of k̂, and R is the rotation

matrix given by eq. (C.1.5). Introducing the notation εµ ≡ (ε0 ; ε̂), and noting the relations:

R(x̂, π)ε̂(ẑ, λ) = −ε̂(ẑ,−λ) , (I.2.47)

R(ẑ, β)ε̂(ẑ, λ) = e−iλβ ε̂(ẑ, λ) , (I.2.48)

it follows that:

εµ(−~k , λ) = −gµµ ξ−λ(k̂) εµ(~k , −λ) , λ = 0 ,±1 , (I.2.49)

where there is no sum over the repeated index µ, and

ξλ(k̂) = −eiλ[γ(k̂)+γ(−k̂)] , λ = 0,±1 . (I.2.50)

Note that for λ = ±1, the phase factor ξλ(k̂) depends on the convention for the definition of

the Euler angle γ used to define the spin-1 polarization vector. As an example, corresponding

to the two conventional choices for γ,

ξλ(k̂) =

{
(−1)1−λe−2iλφ for γ(k̂) = −φ , γ(−k̂) = −π + φ ,

−1 for γ(k̂) = γ(−k̂) = 0 .
(I.2.51)

158Some authors introduce polarization vectors where the sign factor (−1)λ in eq. (I.2.44) is omitted. One
motivation for eq. (I.2.44) is to maintain consistency with the Condon-Shortley phase conventions [330] for the
eigenfunctions of the spin angular momentum operators ~S2 and Sz (for spin-1 particles). In particular, note
the relation r̂·ε̂µ(ẑ,±1) = (4π/3)1/2Y1,±1(θ, φ) between the polarization three-vector and the ℓ = 1 spherical
harmonics without any additional sign factors.
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To motivate the XZC form for the massless spin-1 polarization vectors, we first introduce

a four-vector

k̃µ ≡ E(1 ; −k̂) , (I.2.52)

corresponding to the four-momentum kµ = E(1 ; k̂) of the massless spin-1 boson. A straightfor-

ward calculation then shows that

ǫµ(k ,±1) = 1√
2

〈
k ∓

∣∣σµ∓
∣∣ k̃∓

〉
〈
k ±

∣∣k̃∓
〉 (I.2.53)

precisely reproduces the result of eq. (I.2.41), where the massless spinor wave functions are

defined according to eq. (C.1.8). Eq. (I.2.53) is somewhat inconvenient because the four-vector

k̃ cannot be covariantly defined in terms of k. XZC finessed this problem by introducing a

“reference” four-vector p (in practical computations, p is taken to be another four-momentum

vector in the scattering process of interest), with the properties that p2 = 0 and p·k 6= 0. The

XZC spin-1 polarization vectors are given by [cf. eq. (2.32)] 159

ǫµ(k ,±1) = 1√
2

〈k∓|σµ∓ |p∓〉
〈k ± |p∓〉 . (I.2.54)

One can immediately check that ǫµ(k, λ) so defined satisfy the standard conditions for a valid

polarization four-vector given in eq. (I.2.45) and the phase convention of eq. (I.2.44). The repre-

sentation of the massless spin-1 polarization vector in terms of spinor products [eqs. (I.2.53) and

(I.2.54)] is an application of the spinor calculus that was first developed by van der Waerden [1].

The significance of the reference four-vector p can be discerned from the property that

if a different reference momentum is chosen then ǫµ is shifted by a factor proportional to kµ.

Explicitly, if εµ(k , p , λ) is a polarization vector with reference momentum p, then160

εµ(k , q , ±1) = εµ(k , p , ±1) +
√
2 〈q ± |p∓〉

〈k ± |q∓〉 〈k ± |p∓〉 k
µ . (I.2.55)

In particular, if we choose q = k̃, we see that the difference of the XZC spin-1 polarization

vector and the polarization vector given by eq. (I.2.41) is proportional to kµ. This shift of the

reference momentum from p to q in the XZC definition of the polarization vector does not affect

eq. (I.2.45) since k2 = 0 for massless spin-1 particles. Moreover, this shift does not affect the

final result for any observable (in particular the sum of amplitudes of any gauge invariant set of

159In the literature on the spinor helicity method, the spin-1 polarization vector ε is employed in Feynman
diagram computations for an outgoing final state boson, in contrast to the standard conventions of most quantum
field theory textbooks. In this review, we subscribe to the latter [as indicated at the end of Section 4.1]. Hence, to
be consistent with our conventions above for the spin-1 polarization vector, we have taken the complex conjugate
of the original definition of the XZC spin-1 polarization vectors. In addition, we have removed an overall ± sign
in order to conform to eq. (I.2.44) [cf. footnote 158].
160To derive eq. (I.2.55), evaluate εµ(k , q , λ) − εµ(k , p , λ), and simplify the resulting expression using

eqs. (I.2.10), (I.2.13) and (I.2.14).
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Feynman diagrams remains unchanged). Thus, the presence of the arbitrary four-vector p just

reflects the gauge invariance of the theory of massless spin-1 particles.

We can also verify that ǫµ(k , p , λ) defined in eq. (I.2.54) behaves as expected under rota-

tions. Using eq. (C.1.8), massless spinors transform as:

|k±〉 −→ D(φ, θ, γ) |k±〉 , 〈k±| −→ 〈k±| [D(φ, θ, γ)]−1 , (I.2.56)

under a rotation specified by the Euler angles φ, θ and γ. We shall rotate the spin-1 polarization

vectors by rotating both ~k and the reference momentum ~p simultaneously (since one is always

free to shift the reference vector with no physical consequence). Using eq. (C.1.33), it follows

that:

[D(φ, θ, γ)]−1 σµ±D(φ, θ, γ) = Λµνσ
ν
± , (I.2.57)

where Λµν is specified by eq. (I.2.40). Indeed, if we simultaneously rotate both k and p via

kµ → Λµνk
ν and pµ → Λµνp

ν , then

εµ(k , p , λ) −→ Λµν ε
µ(k , p , λ) , (I.2.58)

as expected. By a similar computation, one can check that under ~k → −~k and ~p → −~p,
eq. (I.2.49) is satisfied.161 In terms of the λ±1/2 defined in eq. (C.3.12), we find

ξλ(~k) = −
(
ξ−λ/2(~k)

ξλ/2(~k)

)∗

=
[
ξλ/2(

~k)
]2
, λ = ±1 , (I.2.59)

which agrees with eq. (I.2.50).

The following additional properties of ǫµ(k , p , λ) defined in eq. (I.2.54) are noteworthy:

p·ǫ(k , p , λ) = 0 , (I.2.60)
∑

λ=±1

ǫµ(k , p , λ)ǫν(k , p , λ)
∗ = −gµν +

pµkν + pνkµ
p·k . (I.2.61)

For example, to prove eq. (I.2.61), we use eqs. (I.2.18) and (I.2.19), and simplify the resulting

expression with the help of eqs. (I.2.10) and (I.2.16), which yields:

∑

λ=±1

ǫµ(k , p , λ)ǫν(k , p , λ)
∗ =
〈k+| (σµp·σσν + σνp·σσµ) |k+〉

2 〈k+| p·σ |k+〉 . (I.2.62)

Using eq. (B.2.17) to simplify the product of three σ/σ matrices, and employing eq. (I.2.11)

then yields eq. (I.2.61).

Finally, using the Fierz identities given in eqs. (B.1.5)–(B.1.7), one derives from eq. (I.2.54)

that

σ± ·ǫ(k , ±1) =
√
2 |p∓〉 〈k∓|
〈k ± |p∓〉 , σ± ·ǫ(k , ±1)∗ =

√
2 |k∓〉 〈p∓|
〈p∓ |k±〉 , (I.2.63)

σ∓ ·ǫ(k , ±1) =
√
2 |k±〉 〈p±|
〈k ± |p∓〉 , σ∓ ·ǫ(k , ±1)∗ =

√
2 |p±〉 〈k±|
〈p∓ |k±〉 . (I.2.64)

161Here, we have used eqs. (B.2.16) and (B.2.17) to write σ0
±σ

µ
∓σ

0
± = −σµ± + 2gµ0σ0

± = gµµσµ± (no sum over µ).
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Note that each equation in eqs. (I.2.63) and (I.2.64) represents two separate equations, corre-

sponding to the upper and lower signs in each equation, respectively.

It should now be clear how to convert the square of a helicity amplitude for a multi-particle

process involving massless spin-1/2 and massless spin-1 particles into a ratio of products of

dot products of momenta. By writing all massless spin-1 polarization vectors in the form of

eq. (I.2.54) and using the properties given above, the helicity amplitudes can easily be expressed

as a ratio of two quantities, each of which is a product of spinor products. Squaring the corre-

sponding amplitude then yields a ratio of products of dot products of four-momenta. A following

simple example will demonstrate the technique.

Consider Compton scattering in QED, e−(~p1, λ1)γ(~k1, λ
′
1) → e−(~p2, λ2)γ(~k2, λ

′
2), in the

limit of massless electrons. The amplitude for this process is given by eq. (4.5.18) with m = 0

and GL = GR = −e. Writing out the “crossed” term explicitly, and noting that for massless

particles, s ≡ (p1 + k1)
2 = 2p1 ·k1 and u ≡ (p1 − k2)2 = −2p1 ·k2,

iM =
−ie2
2p1 ·k1

{
x†(~p2, λ2)σ ·ε∗2 σ ·(p1 + k1)σ ·ε1 x(~p1, λ1) + y(~p2, λ2)σ ·ε∗2 σ ·(p1 + k1)σ ·ε1y†(~p1, λ1)

}

+
ie2

2p1 ·k2

{
x†(~p2, λ2)σ ·ε1 σ ·(p1 − k2)σ ·ε∗2 x(~p1, λ1) + y(~p2, λ2)σ ·ε1 σ ·(p1 − k2)σ ·ε∗2y

†(~p1, λ1)

}
.

(I.2.65)

The results of eqs. (3.1.37)–(3.1.40) imply that the helicity amplitudes with λ1 6= λ2 vanish.

Using eqs. (I.2.7) and (I.2.8), we identify:

iM(λ1 = λ2 =
1
2) =

−ie2
2p1 ·k1

〈p2 + |σ+ ·ε∗2 σ− ·(p1 + k1)σ+ ·ε1|p1+〉

+
ie2

2p1 ·k2
〈p2 + |σ+ ·ε1 σ− ·(p1 − k2)σ+ ·ε∗2|p1+〉 , (I.2.66)

iM(λ1 = λ2 = −1
2) =

−ie2
2p1 ·k1

〈p2 − |σ− ·ε∗2 σ+ ·(p1 + k1)σ− ·ε1|p1−〉

+
ie2

2p1 ·k2
〈p2 − |σ− ·ε1 σ+ ·(p1 − k2)σ− ·ε∗2|p1−〉 . (I.2.67)

Further simplification ensues when we apply the results of eqs. (I.2.63) and (I.2.64). To use

these results, we must select a reference momentum p, which can be any lightlike four-vector

that is not parallel to the corresponding photon polarization vector. One is free to choose a

different reference momentum for each photon polarization vector. Moreover, when computing

two different helicity amplitudes (each of which are gauge invariant quantities), one may select a

different reference momentum for the same photon polarization vector in the two computations.

The decision on which reference momenta to choose is somewhat of an art; experience will teach

you which choices lead to the most simplification in a given calculation.

254



We shall consider two possible choices for the reference momenta for ε1 and ε2, which we

denote as p(1) and p(2), respectively:

1. p(1) = p1 and p(2) = p2 ,

2. p(1) = p2 and p(2) = p1 .

With either choice, it is straightforward to show that M(λ1 = λ2 = ±1
2) vanish unless the

photon helicities are equal, i.e. λ′1 = λ′2. This leaves only four possible non-vanishing helicity

amplitudes.

For the case of λ1 = λ2 = ±1
2 and λ′1 = λ′2 = ±1 (i.e., λ1λ

′
1 > 0), we choose reference

momenta p(1) = p2 and p(2) = p1. Then, the second term vanishes on the right-hand side of

eqs. (I.2.66) and (I.2.67), respectively. Making use of eqs. (I.2.10), (I.2.63) and (I.2.64), we find

iM(λ1 = λ2 =
1
2 , λ

′
1 = λ′2 = 1) =

−ie2
p1 ·k1

〈p2 + |k2−〉 〈p1 − |k1+〉 〈k1 + |p2−〉 〈k1 − |p1+〉
〈p1 − |k2+〉 〈k1 + |p2−〉

=
−ie2
p1 ·k1

〈p1 k1〉 〈k1 p1〉 [p2 k2]
〈p1 k2〉

. (I.2.68)

Using eqs. (I.2.24) and (I.2.30) to write the dot product in terms of spinor products, we obtain:

iM(λ1 = λ2 =
1
2 , λ

′
1 = λ′2 = 1) = 2ie2

〈p1 k1〉
〈p1 k1〉∗

[p2 k2]

〈p1 k2〉
. (I.2.69)

A similar computation yields

iM(λ1 = λ2 = −1
2 , λ

′
1 = λ′2 = −1) = 2ie2

[p1 k1]

[p1 k1]∗
〈p2 k2〉
[p1 k2]

. (I.2.70)

For the case of λ1 = λ2 = ±1
2 and λ′1 = λ′2 = ∓1 (i.e., λ1λ

′
1 < 0), we choose reference

momenta p(1) = p1 and p(2) = p2. Then, the first term vanishes on the right-hand side of

eqs. (I.2.69) and (I.2.70), respectively. A similar calculation to the one given above yields:

iM(λ1 = λ2 = −1
2 , λ

′
1 = λ′2 = 1) = 2ie2

[p1 k2]

[p1 k2]∗
〈p2 k1〉
[p1 k1]

, (I.2.71)

iM(λ1 = λ2 =
1
2 , λ

′
1 = λ′2 = −1) = 2ie2

〈p1 k2〉
〈p1 k2〉∗

[p2 k1]

〈p1 k1〉
. (I.2.72)

Note that each pair of helicity amplitudes above is simply related:

Mλ1 , λ′1 ;λ2 , λ
′
2
(s, θ, φ)∗ =M−λ1 ,−λ′1 ;−λ2 ,−λ′2(s, θ, φ) , (I.2.73)

which is a consequence of rotational and parity invariance (as shown below). Thus in this

example, we only need to evaluate two non-zero helicity amplitudes. It is clear that we have

simplified the computation enormously by our choice of reference momenta. With a less judicious

choice, the calculation is significantly more tedious, although gauge invariance guarantees that

one must arrive at the same result for the helicity amplitudes quoted above.
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One can easily evaluate the spinor products above in the center-of-mass system. Writing

pµ1 = E(1 ; ẑ), kµ1 = E(1 ; −ẑ), pµ2 = E(1 ; p̂CM) and kµ2 = E(1 ; −p̂CM), and using the results

of eqs. (I.1.21) and (I.2.22), we obtain:

〈p1 k1〉 = 2Eξ−1/2(ẑ) , 〈p1 k2〉 = 2Eei[φ+γ(p̂CM)]/2ξ−1/2(p̂CM) cos(θ/2) , (I.2.74)

〈p2 k2〉 = 2Eξ−1/2(p̂CM) , 〈p2 k1〉 = 2Ee−i[φ+γ(p̂CM)]/2ξ−1/2(ẑ) cos(θ/2) , (I.2.75)

where θ and φ are the polar and azimuthal angles of p̂CM. Phase factors involving ξ−1/2 arise

from the use of eqs. (C.3.11) and (C.3.12). For example, corresponding to the two conventional

choices for γ, we use eq. (C.3.15) to obtain

ξ−1/2(ẑ) =

{
−1 for γ(ẑ) = 0 , γ(−ẑ) = −π ,
i for γ(ẑ) = γ(−ẑ) = 0 ,

(I.2.76)

ξ−1/2(p̂CM) =

{
−eiφ for γ(p̂) = −φ , γ(−p̂) = −π + φ

i for γ(p̂) = γ(−p̂) = 0 .
(I.2.77)

All other relevant spinor products can be found using eqs. (I.2.24)–(I.2.26).

It is always possible to define the plane of the scattering process to be the x–z plane,

in which case φ = 0 and all the spinor products in eqs. (I.2.74) and (I.2.75) are manifestly

real. Nevertheless, by keeping the explicit φ-dependence, one maintains a useful check of the

calculation. Inserting the explicit forms for the spinor products into eqs. (I.2.69)–(I.2.72), we

confirm that the φ-dependence of the helicity amplitudes is given by [256,331]:

Mλ1 , λ′1 ; λ2 , λ
′
2
(s, θ, φ) =





ei(λ1−λ
′
1−λ2−λ′2)φMλ1 , λ′1 ; λ2 , λ

′
2
(s, θ) , for γ(p̂CM) = −φ , and

γ(−p̂CM) = −π + φ ,

ei(λ1−λ
′
1)φMλ1 , λ′1 ; λ2 , λ

′
2
(s, θ) , for γ(p̂CM) = γ(−p̂CM) = 0 ,

(I.2.78)

as a consequence of rotational invariance [257].162 The remaining θ-dependent amplitudes are

easily evaluated and are in agreement with the results of refs. [256, 332]. Note that parity

invariance implies that eqs. (I.2.69)–(I.2.72) must satisfy [256,257,332]

Mλ1 , λ′1 ; λ2 , λ
′
2
(s, θ) =M−λ1 ,−λ′1 ;−λ2 ,−λ′2(s, θ) . (I.2.79)

Indeed, in our computation above, eq. (I.2.73) is satisfied, which is consistent with eq. (I.2.79)

in light of eq. (I.2.78).

To compute the unpolarized cross-section for Compton scattering, one must sum the ab-

solute squares of the helicity amplitudes and divide by 4 to average over the initial helicities.

162In the first case, where γ(p̂CM) = −φ and γ(−p̂CM) = −π+φ, the sign of λ′
2 in the φ-dependent phase factor

of eq. (I.2.78) is opposite to the one given in ref. [257], due to the Jacob-Wick second-particle convention, which
we do not employ here. Since λ1 = λ2 and λ′

1 = λ′
2, the latter would imply that the φ-dependent phase cancels

exactly if the Jacob-Wick second-particle convention is used. This is easily checked by putting γ(p̂CM) = −φ and
ξλ = 1 in eqs. (I.2.74) and (I.2.75), in which case all the spinor products are real.
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Since quantities such as 〈p1 k1〉 / 〈p1 k1〉∗ are pure phases, one immediately obtains:

|M(λ1 = λ2 =
1
2 , λ

′
1 = λ′2 = 1)|2 = |M(λ1 = λ2 = −1

2 , λ
′
1 = λ′2 = −1)|2 = 4e4

p1 ·k1
p1 ·k2

, (I.2.80)

|M(λ1 = λ2 = −1
2 , λ

′
1 = λ′2 = 1)|2 = |M(λ1 = λ2 =

1
2 , λ

′
1 = λ′2 = −1)|2 = 4e4

p1 ·k2
p1 ·k1

, (I.2.81)

after employing eq. (I.2.30) and noting that p1 ·k1 = p2 ·k2 and p1 ·k2 = p2 ·k1 (which follow from

four-momentum conservation, p1 + k1 = p2 + k2, for the scattering of massless particles). Thus,

1
4

∑

spins

|M|2 = 2e4
(
p1 ·k1
p1 ·k2

+
p1 ·k2
p1 ·k1

)
, (I.2.82)

which coincides with the well-known result quoted in ref. [114].

Appendix J: The Standard Model and its seesaw extension

In the Standard Model, three generations of quarks and leptons are described by the two-

component fermion fields listed in Table J.1, where Y is the weak hypercharge, T3 is the third

component of the weak isospin, and Q = T3 + Y is the electric charge. After SU(2)L×U(1)Y
breaking, the quark and lepton fields gain mass in such a way that the above two-component

fields combine to make up four-component Dirac fermions:

Ui =



ui

ū†i


 , Di =



di

d̄†i


 , Li =



ℓi

ℓ̄†i


 , (J.1)

while the neutrinos νi remain massless. The extension of the Standard Model to include neutrino

masses will be treated in Appendix J.2.

Here, we follow the convention for particle symbols established in Table 5.1. Note that u,

ū, d, d̄, ℓ and ℓ̄ are two-component fields, whereas the usual four-component quark and charged

lepton fields are denoted by capital letters U , D and E. Consider a generic four-component field

expressed in terms of the corresponding two-component fields:

F =



f

f̄ †


 . (J.2)

The electroweak quantum numbers of f are denoted by T f3 , Yf and Qf , whereas the correspond-

ing quantum numbers for f̄ are T f̄3 = 0 and Qf̄ = Yf̄ = −Qf . Thus we have the correspondence

to our general notation [eq. (G.1.6)]

f ←→ χ, f̄ ←→ η . (J.3)

We can then immediately translate the couplings given in the general case in Fig. 4.3.3 to the

Standard Model.
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Two-component

fermion fields SU(3) SU(2)L Y T3 Q = T3 + Y

Qi ≡



ui

di




triplet

triplet
doublet

1
6

1
6

1
2

−1
2

2
3

−1
3

ūi anti-triplet singlet −2
3 0 −2

3

d̄i anti-triplet singlet 1
3 0 1

3

Li ≡



νi

ℓi




singlet

singlet
doublet

−1
2

−1
2

1
2

−1
2

0

−1

ℓ̄i singlet singlet 1 0 1

Table J.1: Fermions of the Standard Model (following the naming conventions of Table 5.1)
and their SU(3)×SU(2)L×U(1)Y quantum numbers. The generation indices run over i = 1, 2, 3.
Color indices for the quarks are suppressed. The bars on the two-component antifermion fields
are part of their names, and do not denote some form of complex conjugation.

Appendix J.1: Standard Model fermion interaction vertices

The QCD color interactions of the quarks are governed by the following interaction Lagrangian:

Lint = −gsAµaq†mi σµ(T a)m
nqni + gsA

µ
a q̄

†
ni σµ(T

a)m
nq̄mi , (J.1.1)

summed over the generations i, where q is a (mass eigenstate) quark field, m and n are SU(3)

color triplet indices, Aµa is the gluon field (with the corresponding gluons denoted by ga), and

T a are the color generators in the triplet representation of SU(3). The corresponding Feynman

rules are given in Fig. J.1.1.

Next, we write out the Feynman rules for the electroweak interactions of quarks and leptons.

Using eqs. (4.3.11) and (4.3.12), the interactions of the gauge bosons and quarks are given by:

Lint = −
g√
2

[
(û†iσµd̂i + ν̂†iσµℓ̂i)W

+
µ + (d̂†iσµûi + ℓ̂†iσµν̂i)W

−
µ

]

− g

cW

∑

f=u,d,ν,ℓ

{
(T f3 − s2WQf )f̂ †iσµf̂i + s2WQf

ˆ̄f †iσµ ˆ̄fi
}
Zµ

−e
∑

f=u,d,ℓ

Qf (f̂ †iσµf̂i − ˆ̄f †iσµ ˆ̄fi)Aµ , (J.1.2)

where sW ≡ sin θW , cW ≡ cos θW , the hatted symbols indicate fermion interaction eigenstates

and i labels the generations. Following the discussion of Section 3.2, we must convert from
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µ, a

qnj

qmi

−igsδji (T a)m
n σα̇βµ

α̇

β

µ, a

q̄mi

q̄nj

igsδ
j
i (T

a)m
n σα̇βµ

α̇

β

Figure J.1.1: Fermionic Feynman rules for QCD that involve the gluon, with q = u, d, c, s, t, b.
Lowered (raised) indices m,n correspond to the fundamental (anti-fundamental) representation
of SU(3)c. The gluon interactions are flavor-diagonal (where i, j are flavor indices). For each

rule, a corresponding one with lowered spinor indices is obtained by σα̇βµ → −σµβα̇.

fermion interaction eigenstates to mass eigenstates. In order to accomplish this step, we must

first identify the quark and lepton mass matrices. In the electroweak theory, the fermion mass

matrices originate from the fermion-Higgs Yukawa interactions.

The Higgs field of the Standard Model is a complex SU(2)L doublet of hypercharge Y = 1
2 ,

Φa ≡


Φ+

Φ0


 , (J.1.3)

where the SU(2)L index a = 1, 2 is defined such that Φ1 ≡ Φ+ and Φ2 ≡ Φ0. Here, the

superscripts + and 0 refer to the electric charge of the Higgs field, Q = T3 +Y , with Y = 1
2 and

T3 = ±1
2 . Since Φa is complex, we can also introduce the complex conjugate Higgs doublet field

with hypercharge Y = −1
2 ,

Φ† a ≡
(
Φ− , (Φ0)†

)
, (J.1.4)

where Φ− ≡ (Φ+)†. The SU(2)L×U(1)Y gauge invariant Yukawa interactions of the quarks and

leptons with the Higgs field are then given by:

LY = ǫab(Y u)
i
jΦaQ̂biū

j − (Y d)
i
jΦ

† aQ̂ai
ˆ̄dj − (Y ℓ)

i
jΦ

† aL̂ai
ˆ̄ℓj + h.c. (J.1.5)

where ǫab is the antisymmetric invariant tensor of SU(2)L, defined such that ǫ12 = −ǫ21 = +1.

Using the definitions of the SU(2)L doublet quark and lepton fields given in Table J.1, one can

rewrite eq. (J.1.5) more explicitly as:

−LY = (Y u)
i
j

[
Φ0ûi ˆ̄u

j − Φ+d̂i ˆ̄u
j
]
+(Y d)

i
j

[
Φ−ûi

ˆ̄dj +Φ0∗d̂i
ˆ̄dj
]
+(Y ℓ)

i
j

[
Φ−ν̂i

ˆ̄ℓj +Φ0∗ℓ̂i
ˆ̄ℓj
]
+h.c.

(J.1.6)

The Higgs fields can be written in terms of the physical Higgs scalar hSM and Nambu-Goldstone

bosons G0, G± as

Φ0 = v +
1√
2
(hSM + iG0) , (J.1.7)

Φ+ = G+ = (Φ−)† = (G−)†. (J.1.8)
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where v =
√
2mW/g ≃ 174 GeV. In the unitary gauge appropriate for tree-level calculations,

the Nambu-Goldstone bosons become infinitely heavy and decouple. We identify the quark and

lepton mass matrices by setting Φ0 = v and Φ+ = Φ− = 0 in eq. (J.1.6):

(Mu)
i
j = v(Y u)

i
j , (M d)

i
j = v(Y d)

i
j , (M ℓ)

i
j = v(Y ℓ)

i
j . (J.1.9)

The neutrinos remain massless. An extension of the Standard Model that incorporates massive

neutrinos is treated in Appendix J.2.

To diagonalize the quark and lepton mass matrices, we introduce four unitary matrices for

the quark mass diagonalization, Lu, Ld, Ru and Rd, and two unitary matrices for the lepton

mass diagonalization, Lℓ and Rℓ [cf. eq. (3.2.31)] such that

ûi = (Lu)i
juj , d̂i = (Ld)i

jdj , ˆ̄ui = (Ru)
i
j ū
j , ˆ̄di = (Rd)

i
j d̄
j , (J.1.10)

ℓ̂i = (Lℓ)i
jℓj ,

ˆ̄ℓi = (Rℓ)
i
j ℓ̄
j , (J.1.11)

where the unhatted fields u, d, ū and d̄ are the corresponding quark mass eigenstates and ν, ℓ and

ℓ̄ are the corresponding lepton mass eigenstates. The fermion mass diagonalization procedure

consists of the singular value decomposition of the quark and lepton mass matrices:

LT

uMuRu = diag(mu , mc , mt) , (J.1.12)

LT

dM dRd = diag(md , ms , mb) , (J.1.13)

LT

ℓ M ℓRℓ = diag(me , mµ , mτ ) , (J.1.14)

where the diagonalized masses are real and non-negative (cf. Appendix D.1). Since the neutrinos

are massless, we are free to define the physical neutrino fields, νi, as the weak SU(2) partners of

the corresponding charged lepton mass eigenstate fields. That is,

ν̂i = (Lℓ)i
jνj . (J.1.15)

We can now write out the couplings of the mass eigenstate quarks and leptons to the gauge

bosons and Higgs bosons. Consider first the charged current interactions of the quarks and

leptons. Using eq. (J.1.10), it follows that û†iσµd̂i = Ki
ju†iσµdj, where

K = L†
uLd (J.1.16)

is the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix [333].163 Due to eq. (J.1.15), the

corresponding leptonic CKM matrix is the unit matrix. Hence, the charged current interactions

take the form

Lint = −
g√
2

[
Ki

ju†iσµdjW
+
µ + (K†)i

jd†iσµujW
−
µ + ν†iσµℓiW

+
µ + ℓ†iσµνiW

−
µ

]
, (J.1.17)

163The CKM matrix elements Vij as defined in ref. [334] are related by, for example, Vtb = K3
3 and Vus = K1

2.
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Figure J.1.2: Feynman rules for the two-component fermion interactions with electroweak
gauge bosons in the Standard Model. The couplings of the fermions to γ and Z are flavor-
diagonal. In all couplings, i and j label the fermion generations; an upper [lowered] flavor index
in the corresponding Feynman rule is associated with a fermion line that points into [out from]
the vertex. For the W± bosons, the charge indicated is flowing into the vertex. The electric
charge is denoted by Qf (in units of e > 0), with Qe = −1 for the electron. T f3 = 1/2 for f = u,

ν, and T f3 = −1/2 for f = d, ℓ. The CKM mixing matrix is denoted by K, and sW ≡ sin θW ,
cW ≡ cos θW and e ≡ g sin θW . For each rule, a corresponding one with lowered spinor indices
is obtained by σα̇βµ → −σµβα̇.

where [K†]i
j ≡ [Kj

i]∗. Note that in the Standard Model, ū, d̄ and ℓ̄ do not couple to the W±.

To obtain the neutral current interactions, we insert eqs. (J.1.10)–(J.1.15) into eq. (J.1.2).

All factors of the unitary matrices Lf and Rf (f = u, d, ℓ) cancel out, and the resulting inter-

actions are flavor-diagonal. That is, we may simply remove the hats from the quark and lepton

fields that couple to the Z and photon fields in eq. (J.1.2). This is the well-known Glashow-

Iliopoulos-Maiani (GIM) mechanism for the flavor-conserving neutral currents [335].164

164This also provides the justification for employing mass eigenstate quark fields in the QCD interaction La-
grangian in eq. (J.1.1).
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The Feynman rules for the interactions of the quarks and leptons with the charged and

neutral gauge bosons are exhibited in Fig. J.1.2. For each of the rules of Fig. J.1.2, we have

chosen to employ σα̇βµ . If the indices are lowered one should take σα̇βµ → −σµβα̇.
Finally, we exhibit the interactions of the quark and lepton mass eigenstates with the Higgs

fields. The diagonalization of the fermion mass matrices is equivalent to the diagonalization of

the Yukawa couplings [cf. eqs. (J.1.9) and (J.1.12)–(J.1.14)]. Thus, we define165

Yfi = mfi/v , f = u, d, ℓ , (J.1.18)

where i labels the fermion generation. It is convenient to rewrite eqs. (J.1.12)–(J.1.14) as follows:

(Lf )k
j(Y f )

k
m(Rf )

m
i = Yfiδ

j
i , f = u, d, ℓ , (J.1.19)

with no sum over the repeated index i. Using the unitarity of Lf (f = u, d), eq. (J.1.19) is

equivalent to the following convenient form:

(Y fRf )
k
i = Yfi(L

†
f )i

k . (J.1.20)

Inserting eqs. (J.1.10), (J.1.15) and (J.1.19) into eq. (J.1.6), the resulting Higgs-fermion La-

grangian is flavor-diagonal:

Lint = −
1√
2
hSM

[
Yuiuiū

i + Ydidid̄
i + Yℓiℓiℓ̄

i
]
+ h.c. (J.1.21)

The corresponding Feynman rules for the Higgs-fermion interaction are shown in Fig. J.1.3.

hSM
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fi

−i√
2
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i
j δα
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α

β

hSM
f̄ j

fi

−i√
2
Yfiδ

j
i δ

α̇
β̇

α̇

β̇

Figure J.1.3: Feynman rules for the Standard Model Higgs boson interactions with fermions,
where Yfi ≡ mfi/v, and i, j label the generations.

In the case of more general covariant gauge-fixing (e.g., the ’t Hooft-Feynman gauge or

Landau gauge), the Goldstone bosons appear explicitly in internal lines of Feynman diagrams.

The Feynman rules for G0-fermion interactions are flavor-diagonal, whereas the corresponding

rules for G± exhibit flavor-changing interactions that depend on the CKM matrix elements, as

shown in Fig. J.1.4. In the derivation of the couplings of the Nambu-Goldstone bosons to the

fermion mass eigenstates [cf. eqs. (J.1.6)–(J.1.8)], the following quantities appear:

(Ld)k
j(Y u)

k
m(Ru)

m
i = Yui(Ld)k

j(L†
u)i

k = Yui(L
†
uLd)i

j = [K]i
jYui , (J.1.22)

(Lu)k
j(Y d)

k
m(Rd)

m
i = Ydi(Lu)k

j(L†
d)i

k = Ydi(L
†
dLu)i

j = [K†]i
jYdi , (J.1.23)

165Boldfaced symbols are used for the non-diagonal Yukawa matrices, while non-boldfaced symbols are used for
the diagonalized Yukawa couplings.
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Figure J.1.4: Feynman rules for the Standard Model Nambu-Goldstone boson interactions
with quarks and leptons, where Yfi ≡ mfi/v, and i, j label the generations.
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with no sum over the repeated index i. The CKM matrix, K, appears by virtue of eqs. (J.1.16)

and (J.1.20). Hence, the interaction Lagrangian for the coupling of the Nambu-Goldstone bosons

to the fermion mass eigenstates is given by:

Lint = Yui[K]i
jdj ū

iG+−Ydi[K†]i
juj d̄

iG−−Yℓiνiℓ̄iG−+
i√
2

[
Ydidid̄

i − Yuiuiūi + Yℓ iℓiℓ̄
i
]
G0+h.c.,

(J.1.24)

which yields the diagrammatic Feynman rules shown in Fig. J.1.4.

Appendix J.2: Incorporating massive neutrinos into the Standard Model

To accommodate massive neutrinos, we must slightly extend the Standard Model [336]. The

simplest approach is to introduce an SU(2)×U(1) gauge invariant dimension-five operator [337],

L5 = −
F̂
ij

2Λ
(ǫabΦaL̂bi)(ǫ

cdΦcL̂dj) + h.c.

= − F̂
ij

2Λ
(Φ0ν̂i −Φ+ℓ̂i)(Φ

0ν̂j − Φ+ℓ̂j) + h.c. , (J.2.1)

where F̂
ij

are generalized Yukawa couplings, the hatted fields indicate two-component fermion

interaction eigenstates (with spinor indices suppressed), and i, j label the three generations.

After electroweak symmetry breaking, the neutral component of the doublet Higgs field acquires

a vacuum expectation value, and a Majorana mass matrix for the neutrinos is generated.

The diagonalization of the charged lepton mass matrix is unmodified from the treatment

given in Appendix J.1, where the unhatted mass eigenstate charged lepton fields are given by

eq. (J.1.11), and Lℓ and Rℓ satisfy eq. (J.1.14). However, the unhatted neutrino field introduced

in eq. (J.1.15) is not a neutrino mass eigenstate field when the effect of the dimension-five

Lagrangian, eq. (J.2.1), is taken into account. To avoid confusion, we replace the unhatted

neutrino fields of eq. (J.1.15) with new neutrino fields ν̆j . That is, we define

ν̂i = (Lℓ)i
j ν̆j . (J.2.2)

We then rewrite eq. (J.2.1) in terms of the charged lepton mass eigenstate field and the new

neutrino field defined by eq. (J.2.2):

L5 = −
F ij

2Λ
(Φ0ν̆i − Φ+ℓi)(Φ

0ν̆j − Φ+ℓj) + h.c. , (J.2.3)

where F ≡ LT

ℓ F̂Lℓ. Setting Φ0 = v and Φ+ = Φ− = 0, we identify the 3× 3 complex symmetric

effective light neutrino mass matrix, Mνℓ
, by

−Lmν = 1
2(Mνℓ

)ij ν̆iν̆j + h.c. , (J.2.4)

where

Mνℓ
=
v2

Λ
F . (J.2.5)
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Current bounds on light neutrino masses suggest that v2/Λ <∼ 1 eV, or Λ >∼ 1013 GeV [334,

338].

The physical neutrino mass eigenstate fields can be identified by introducing the unitary

Maki-Nakagawa-Sakata (MNS) matrix, UMNS, such that [339],166

(ν̆ℓ)i = (UMNS)i
j(νℓ)j , (J.2.6)

where the unhatted (νℓ)j fields [j = 1, 2, 3] denote the physical (mass eigenstate) Majorana

neutrino fields. UMNS is determined by the Takagi diagonalization of Mνℓ
[cf. Appendix D.2]:

UT

MNSMνℓ
UMNS = diag(mνℓ1 , mνℓ2 , mνℓ3) , (J.2.7)

where the mνℓj are the (real non-negative) masses of the physical neutrinos.

The interaction Lagrangian of the neutrino mass eigenstates can now be determined. The

charged current neutrino interactions are given by [cf. eq. (J.1.17)]:

Lint = −
g√
2

[
ν̆†iσµℓiW

+
µ + ℓ†iσµν̆iW

−
µ

]

= − g√
2

[
(U †

MNS)j
iν†jℓ σ

µℓiW
+
µ + (UMNS)i

jℓ†iσµνℓjW
−
µ

]
, (J.2.8)

where we have used eq. (J.2.6) to express the interaction Lagrangian in terms of the neutrino

mass eigenstate fields. The neutral current neutrino interactions are flavor-diagonal (which

follows from the unitarity of UMNS), and are thus equivalent to those of the Standard Model.

Finally, the couplings of the neutrinos to the Higgs and Nambu-Goldstone fields arise from

eq. (J.2.3) and from the term in eq. (J.1.6) proportional to Y ℓ. Neglecting terms of O(m2
ν/v

2),

one obtains:

Lint =
1

v

∑

i,j

[
(mνℓ)j(U

†
MNS)j

i(νℓ)j ℓiG
+ − (mℓ)i(UMNS)i

j(νℓ)j ℓ̄
iG− + h.c.

]

− 1√
2v

∑

j

(mνℓ)j
[
(νℓ)j(νℓ)j(hSM + iG0) + h.c.

]
. (J.2.9)

The Feynman rules for the interactions of the neutrino with the electroweak gauge bosons, the

Higgs boson and the Nambu-Goldstone bosons are exhibited in Fig. J.2.1.

The dimension-five Lagrangian, eq. (J.2.1), is generated by new physics beyond the Standard

Model at the scale Λ. A possible realization of eq. (J.2.1) is the seesaw mechanism, which was

independently discovered on a number of occasions [4]. In the seesaw extension of the Standard

Model [5], one introduces the SU(3)×SU(2)×U(1) gauge singlet two-component neutrino fields

ν̄I (I = 1, 2, . . . , n) and writes down the most general renormalizable couplings of the ν̄I to the

Standard Model fields:

Lseesaw = ǫab(Ŷ ν)
i
JΦaL̂bi ˆ̄ν

J − 1
2M̂ IJ ˆ̄ν

I ˆ̄νJ + h.c. , (J.2.10)

166In the literature, the MNS matrix is often defined such that U∗
MNS (and not UMNS) appears in eq. (J.2.6).
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Figure J.2.1: Feynman rules for the interactions of the two-component light neutrino (νℓ) with
electroweak gauge bosons, the Standard Model Higgs boson and the Nambu-Goldstone bosons,
where i, j label the generation. For the W± bosons and G± scalars, the charge indicated is
flowing into the vertex. The MNS mixing matrix is denoted by UMNS. For the rules involving
W± and Z bosons, a corresponding one with lowered spinor indices is obtained by σα̇βµ → −σµβα̇.
In the h0SM and G0 interactions, a factor of 2 is included to account for the identical neutrinos.
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where the Yukawa coupling proportional to Ŷ ν is the leptonic analogue of the Higgs-quark

Yukawa coupling proportional to Ŷ u [cf. eq. (J.1.5)]. In eq. (J.2.10), we have distinguished the

flavor labels of three generations of Standard Model neutrino and charged lepton fields (denoted

by lower case Roman letters i, j, . . .) and the flavor labels of singlet neutrino fields (denoted by

upper case Roman letters I, J, . . .). Note that Ŷ ν is a 3× n matrix and M̂ is an n× n matrix,

where n is the number of singlet neutrino flavors. In general, we shall not specify the value of

n, which may differ from the number of Standard Model lepton generations.

If Λ ≡ ‖M̂‖ ≫ v,167 then a dimension-five operator of the form given by eq. (J.2.1) is

generated in the effective theory at energy scales below Λ. In this limit, we may neglect the

kinetic energy term of the gauge singlet neutrino fields. Using the Lagrange field equations, we

may solve for ˆ̄νI . Inserting the solution back into eq. (J.2.10) then yields eq. (J.2.1), with F̂ /Λ

given by

F̂
ij
/Λ = −(Ŷ ν)

i
K(Ŷ ν)

j
N (M̂

−1
)KN . (J.2.11)

Using the definition of the SU(2)L doublet lepton field given in Table J.1, one can rewrite

eq. (J.2.10) more explicitly as:

Lseesaw = −(Ŷ ν)
i
J

[
Φ0ν̂i ˆ̄ν

J − Φ+ℓ̂i ˆ̄ν
J
]
− 1

2M̂ IJ ˆ̄ν
I ˆ̄νJ + h.c. (J.2.12)

To analyze the physical consequences of the seesaw Lagrangian, we first express eq. (J.2.12)

in terms of the unhatted mass eigenstate charged lepton fields [cf. eq. (J.1.11)], and the light

neutrino fields ν̆i introduced in eq. (J.2.2). It is also convenient to introduce new gauge singlet

neutrino fields ˘̄νJ by defining

ˆ̄νI = N I
J ˘̄ν

J , (J.2.13)

where N is the unitary matrix that Takagi-diagonalizes the complex symmetric matrix M̂ .

That is,

M ≡ NTM̂N = diag(M1 , M2 , . . . ,Mn) , (J.2.14)

where theMI are the singular values of M̂ (i.e., the non-negative square roots of the eigenvalues

of M̂
†
M̂). In terms of the mass eigenstate charged lepton fields ℓi and the neutrino fields ν̆i

and ˘̄νI , the seesaw Lagrangian [eq. (J.2.12)] is then given by:

Lseesaw = −(Y ν)
i
J

[
Φ0ν̆i ˘̄ν

J − Φ+ℓi ˘̄ν
J
]
− 1

2M IJ ˘̄ν
I ˘̄νJ + h.c. , (J.2.15)

where

Y ν ≡ LT

ℓ Ŷ νN . (J.2.16)

167The Euclidean matrix norm is defined by ‖A‖ ≡
[
Tr(A†A)

]
1/2 =

[∑
i,j |aij |2

]
1/2

, for a matrix A whose

matrix elements are given by aij .

267



As above, in the limit of Λ ≡ ‖M̂‖ = ‖M‖ ≫ v, it is also possible to directly generate

the effective dimension-five operator [eq. (J.2.3)] in terms of the mass eigenstate charged lepton

fields and the new neutrino fields ν̆j. We then identify the corresponding coefficient, F /Λ, as

F ij/Λ = −(Y ν)
i
K(Y ν)

j
N (M

−1)KN . (J.2.17)

Recalling that F = LT

ℓ F̂Lℓ, one can check that eq. (J.2.17) indeed follows from eqs. (J.2.11),

(J.2.14) and (J.2.16).

To identify the neutrino mass matrix, we set Φ0 = v and Φ+ = Φ− = 0 in eq. (J.2.15):

−Lmν = 1
2 (ν̆i ˘̄νJ)Mν


 ν̆k

˘̄νM


+ h.c. (J.2.18)

The neutrino mass matrixMν is a (3 + n)× (3 + n) complex symmetric matrix given in block

form by:

Mν ≡


 O MD

MT

D M


 , (J.2.19)

where O is the 3× 3 zero matrix, M is the diagonal matrix defined in eq. (J.2.14) and MD is

a 3× n complex matrix (called the Dirac neutrino mass matrix),

(MD)ij ≡ v(Y ν)
i
j . (J.2.20)

Note that if n = 3 and M = O, then MD is a 3 × 3 matrix that is simply the leptonic

analogue of the up-type quark mass matrix Mu. In this case, we would perform a singular value

decomposition of MD and identify the unhatted neutrino mass eigenstate fields, which can be

assembled into three generations of four-component Dirac neutrinos,

Ni =



νi

ν̄†i


 , i = 1, 2, 3 . (J.2.21)

In the seesaw model (with n not specified), we assume that ‖M‖ ≫ ‖MD‖. In this case, the

neutrino mass matrix can be perturbatively Takagi-block-diagonalized as follows [280,298,340].

Introduce the (3 + n)× (3 + n) (approximate) unitary matrix:

U =


 13×3 − 1

2M
∗
DM−2MT

D M∗
DM−1

−M−1MT

D 1n×n − 1
2M

−1MT

DM∗
DM−1


 , (J.2.22)

where 1 is the identity matrix (whose dimension is explicitly specified above). We define trans-

formed [light (ℓ) and heavy (h)] neutrino states (ν̆ℓ)i and (˘̄νh)
j by:


 ν̆i

˘̄νJ


 = U


 (ν̆ℓ)k

(˘̄νh)
M


 . (J.2.23)
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By straightforward matrix multiplication, one can verify that to second order accuracy in per-

turbation theory,

UTMν U ≃


−MDM−1MT

D O

OT M + 1
2(M

−1M
†
DMD +MT

DM∗
DM−1)


 , (J.2.24)

where O is the 3× n zero matrix.

We now can identify an effective 3× 3 complex symmetric mass matrix Mνℓ
for the three

light neutrinos as the upper left-hand block of eq. (J.2.24),

Mνℓ
≃ −MDM−1MT

D , (J.2.25)

where corrections of O(v4/Λ3) have been neglected. Using eqs. (J.2.17) and (J.2.20), we see that

the light neutrino mass matrix obtained in eq. (J.2.5) has been correctly reproduced to leading

order in v2/Λ2.

The physical light neutrino mass eigenstate fields and their masses are identified by eqs. (J.2.6)

and (J.2.7). At energy scales below the heavy neutrino mass scale, Λ ≡ ‖M‖, and we can set

˘̄νh = 0. Neglecting corrections of O(v2/Λ2), eqs. (J.2.20)–(J.2.25) imply that168

ν̆i ≃ (UMNS)i
j(νℓ)j , (J.2.26)

(Y ν)
i
J ˘̄ν

J ≃ 1

v
(Mνℓ

UMNS)
ik(νℓ)k =

1

v

∑

k

(U †
MNS)k

i (mνℓ)k(νℓ)k , (J.2.27)

where in the last step above we have used eq. (J.2.7) and (U †
MNS)j

i ≡ [(UMNS)i
j ]∗. Using

eqs. (J.2.26) and (J.2.27) to express the seesaw Lagrangian in terms of the light neutrino mass

eigenstate fields, one can verify that the resulting interactions of the light neutrinos (and charged

leptons) to gauge bosons, the Higgs boson and the Nambu-Goldstone bosons reproduce the

results of eqs. (J.2.8) and (J.2.9) at leading order in v2/Λ2.

For completeness, we examine the effective n × n complex symmetric mass matrix of the

heavy neutrino states, Mνh
, which is identified as the lower right-hand block in eq. (J.2.24),

Mνh
≃M + 1

2 (M
−1M

†
DMD +MT

DM∗
DM−1) . (J.2.28)

Although M is diagonal by definition [cf. eq. (J.2.14)], the right-hand side of eq. (J.2.28) is no

longer diagonal due to the second order perturbative correction. However, we do not have to

perform another Takagi diagonalization, since the off-diagonal elements of the lower right-hand

168Strictly speaking, eq. (J.2.27) should be written as:

(Y ν)
i
J ˘̄ν

J ≃ 1

v

∑

k,n

(U†
MNS)n

i δnk(mνℓ)k(νℓ)k ,

to maintain covariance in the flavor indices.
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block only affect the physical (diagonal) masses at higher order in perturbation theory. Thus,

we identify the physical heavy neutrino mass eigenstates to leading order by the unhatted fields,

ν̄Jh ≃ ˘̄νJh , (J.2.29)

with masses

mνhJ ≃MJ

(
1 +

1

M2
J

∑

i

|(MD)iJ |2
)
, (J.2.30)

where theMJ are the diagonal elements of M (and no sum over the repeated index J is implied).

That is, the masses of the heavy neutrinos are simply given by mνhJ ≃ MJ , up to corrections

that are of the same order as the light neutrino masses.

The interactions of the heavy neutrinos can be likewise obtained. The only unsuppressed

interactions are heavy neutrino couplings to the Higgs boson and Nambu-Goldstone bosons that

are proportional to the Dirac neutrino mass matrix,

Lint = −
1√
2v

(UT

MNSMD)kJ ν̄
J
h (νℓ)k(h

0
SM + iG0) +

1

v
(MD)iJℓiν̄

J
hG

+ + h.c. (J.2.31)

All other couplings of the heavy neutrinos to theW± and Z bosons (and additional contributions

to the couplings of the heavy neutrinos to the Higgs boson and Nambu-Goldstone bosons) are

suppressed by (at least) a factor of O(v/Λ).

Appendix K: MSSM fermion interaction vertices

In this section, we provide the Feynman rules for the MSSM interaction vertices. To complete the

tabulation of all MSSM Feynman rules, one requires the rules for the purely bosonic interactions

of the MSSM. These can be found in refs. [341,342].

K.1 Higgs-fermion interaction vertices in the MSSM

The MSSM Higgs sector is a two Higgs doublet model containing eight real scalar degrees of

freedom: one complex Y = −1
2 doublet, Hd = (H0

d , H
−
d ) and one complex Y = +1

2 doublet,

Hu = (H+
u , H

0
u). The notation reflects the form of the MSSM Higgs sector coupling to fermions:

LY = ǫab
[
(Y u)

i
j(Hu)aQ̂bi

ˆ̄uj − (Y d)
i
j(Hd)aQ̂bi

ˆ̄dj − (Y ℓ)
i
j(Hd)aL̂bi

ˆ̄ℓj
]
+ h.c. , (K.1.1)

where the hatted fields are interaction eigenstate quark and lepton fields (with generation labels

i and j), a and b are SU(2)L indices and the invariant SU(2)L tensor ǫab is defined below

eq. (J.1.5). That is, the neutral Higgs fields H0
d [H0

u] couple exclusively to down-type [up-

type] fermion pairs, respectively. In the supersymmetric model, both hypercharge Y = −1
2 and

Y = +1
2 complex Higgs doublets are required in order that the theory (which now contains the

corresponding higgsino superpartners) remain anomaly free. The supersymmetric structure of
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the theory forbids the coupling of H†
u to ˆ̄dj and ˆ̄ℓj or the coupling of H

†
d to ˆ̄uj, as such couplings

would not be holomorphic. Consequently, (at least) two Higgs doublets are required in the MSSM

to generate mass for both “up”-type and “down”-type quarks and charged leptons [170,343,344].

To find the couplings of the Higgs fields, we expand them around the neutral Higgs field

vacuum expectation values vd ≡
〈
H0
d

〉
and vu ≡

〈
H0
u

〉
. Depending on the application, these

may be chosen to be the minimum of the tree-level scalar potential, or of the full loop-corrected

effective potential, or just left arbitrary. It is always possible to choose the phases of the Higgs

fields such that vu and vd are real and positive. We then define

β ≡ tan−1

(
vu
vd

)
, 0 ≤ β ≤ π

2
. (K.1.2)

The one potentially complex squared-mass parameter that appears in the tree-level MSSM

Higgs scalar potential is necessarily real in the convention where the vacuum expectation values

of the neutral Higgs fields are real and positive.169 Consequently, the tree-level MSSM Higgs

sector conserves CP, which implies that the neutral Higgs mass eigenstates possess definite CP

quantum numbers.170 Spontaneous electroweak symmetry breaking results in three Goldstone

bosons G±, G0 (the neutral Goldstone boson is a CP-odd scalar field), which are absorbed

and become the longitudinal components of the W± and Z. The remaining five physical Higgs

particles consist of a charged Higgs pair H±, one CP-odd scalar A0, and two CP-even scalars

h0 and H0.

It is convenient to define H−
u ≡ (H+

u )
† and H+

d ≡ (H−
d )

†. One can then parameterize the

mixing angles between Higgs gauge eigenstates and mass eigenstates by writing:

H0
u = vu +

1√
2

∑

φ0

kuφ0φ
0, H±

u =
∑

φ±
kuφ±φ

± , (K.1.3)

H0
d = vd +

1√
2

∑

φ0

kdφ0φ
0, H±

d =
∑

φ±
kdφ±φ

± . (K.1.4)

For φ± = (H±, G±),171

kuφ± = (cos β±, sin β±) , (K.1.5)

kdφ± = (sin β±, − cosβ±) , (K.1.6)

and for φ0 = (h0, H0, A0, G0),

kuφ0 = (cosα, sinα, i cos β0, i sin β0) , (K.1.7)

kdφ0 = (− sinα, cosα, i sin β0, −i cos β0) , (K.1.8)

169The coefficients of the quartic terms of the tree-level MSSM Higgs potential are related to the electroweak
gauge couplings and are manifestly real, independently of the convention for the phases of the Higgs fields.
170When one-loop corrections are taken into account, new MSSM phases can enter in the loops that cannot be

removed. In this case, the physical neutral Higgs states can be mixtures of CP-even and CP-odd scalar states [345].
171Note that φ− ≡ (φ+)†. Since the kfφ± (for f = u, d) are real quantities, we adopt the notation in which
kfφ+ = kfφ− ≡ kφ± and β+ = β− ≡ β±.
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where the mixing angle α parameterizes the orthogonal matrix that diagonalizes the 2× 2 CP-

even Higgs squared-mass matrixM2
0 [defined in eq. (K.1.11) below].

In eqs. (K.1.3) and (K.1.4), the normalization of the vacuum expectation values is

v2d + v2u = 2m2
W/g

2 ≃ (174 GeV)2 , (K.1.9)

if one chooses vu, vd to be near the true minimum of the Higgs effective potential. Note that

in the special case that vu and vd are at the minimum of the tree-level potential, the mixing

angles β± in the charged Higgs sector and β0 in the CP-odd neutral Higgs sectors coincide such

that β± = β0 = β, where β is defined in eq. (K.1.2). However, if one expands around a more

general choice of vu, vd, including for example the minimum of the full effective potential, then

the tree-level mixing angles β0 and β± are distinct from each other and from β. (Depending

on the choice of renormalization scale for a particular calculation, the tree-level potential in the

MSSM may have a very different minimum from the true minimum of the full effective potential,

or may not have a proper minimum at all.) Therefore, we do not assume anything specific about

vu and vd except that they are real and positive by convention.

All MSSM Higgs boson masses and the mixing angle α are determined at tree level by

two Higgs sector parameters, usually taken to be the ratio of the tree-level vacuum expectation

values, tan β = vu/vd, and the mass of the CP-odd Higgs scalar, mA [170, 344]. The tree-level

value of the squared mass of the charged Higgs boson is given by

m2
H± = m2

A +m2
W . (K.1.10)

The CP-even Higgs bosons h0 and H0 are eigenstates of the tree-level squared-mass matrix,

M2
0 =


 m2

A sin2 β +m2
Z cos2 β −(m2

A +m2
Z) sin β cos β

−(m2
A +m2

Z) sin β cos β m2
A cos2 β +m2

Z sin2 β


 . (K.1.11)

The eigenvalues ofM2
0 are the tree-level squared masses of the two CP-even Higgs scalars,

m2
H,h = 1

2

(
m2
A +m2

Z ±
√

(m2
A +m2

Z)
2 − 4m2

Zm
2
A cos2 2β

)
, (K.1.12)

with mh ≤ mH . The angle α of the orthogonal matrix that diagonalizes M2
0 is given by [346]:

sin 2α = − sin 2β

(
m2
A +m2

Z

m2
H −m2

h

)
, cos 2α = − cos 2β

(
m2
A −m2

Z

m2
H −m2

h

)
. (K.1.13)

Since sin 2α ≤ 0, the tree-level value of α is restricted to lie in the range −π/2 ≤ α ≤ 0.

Radiative corrections can have a significant impact on the tree-level Higgs masses and

mixing angle α [345, 347]. For example, the tree-level bound mh ≤ mZ | cos 2β| ≤ mZ [which

follows from eq. (K.1.12)] is significantly modified by an incomplete cancellation of top quark
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and top squark loop corrections. Including the latter implies that mh <∼ 135 GeV [348], which

(in contrast to the tree-level prediction) is not experimentally excluded.

The Higgs-fermion Yukawa couplings in the gauge-interaction basis are given by eq. (K.1.1).

Explicitly,

−LY = (Y u)
i
j

[
ûi ˆ̄u

jH0
u − d̂i ˆ̄ujH+

u

]
+ (Y d)

i
j

[
d̂i

ˆ̄djH0
d − ûi ˆ̄djH−

d

]

+(Y ℓ)
i
j

[
ℓ̂i
ˆ̄ℓjH0

d − ν̂i ˆ̄ℓjH−
d

]
+ h.c. (K.1.14)

We use eqs. (K.1.3) and (K.1.4) to express the interaction-eigenstate Higgs fields in terms of the

physical Higgs fields and Goldstone fields. We can identify the quark and lepton mass matrices

simply by setting H0
u = vu, H

0
d = vd and H+

u = H−
d = 0 in eq. (K.1.14) ,

(Mu)
i
j = vu(Y u)

i
j , (Md)

i
j = vd(Y d)

i
j , (M ℓ)

i
j = vd(Y ℓ)

i
j . (K.1.15)

We then use eqs. (J.1.10) and (J.1.11) to express the interaction-eigenstate quark and lepton

fields in terms of the corresponding mass eigenstate fields. Eqs. (J.1.12) and (J.1.14) ensure that

the fermion mass matrices are diagonal (with real non-negative elements) in the fermion mass

eigenstate basis. In this basis, the resulting neutral Higgs-fermion interactions are diagonal.

Here, the diagonalized Higgs-fermion Yukawa coupling matrices appear:

diag(Yu1, Yu2, Yu3) ≡ diag(Yu, Yc, Yt) = LT

uY uRu , (K.1.16)

diag(Yd1, Yd2, Yd3) ≡ diag(Yd, Ys, Yb) = LT

dY dRd , (K.1.17)

diag(Yℓ1, Yℓ2, Yℓ3) ≡ diag(Ye, Yµ, Yτ ) = LT

ℓ Y ℓRℓ . (K.1.18)

The diagonalized Yukawa couplings are related to the corresponding fermion masses by

Yui = mui/vu , Ydi = mdi/vd , Yℓi = mℓi/vd . (K.1.19)

We have used the same symbol for the Yukawa couplings in the MSSM as we did for the

Standard Model Yukawa couplings in Appendix J.1. However, it is important to note that the

MSSM Yukawa couplings are normalized differently because of the presence of two neutral Higgs

field vacuum expectation values. Using a superscript SM to denote the Standard Model Yukawa

couplings of Appendix J.1, the MSSM Yukawa couplings defined here are related by:

Yui = Y SM
ui / sin β , Ydi = Y SM

di / cos β , Yℓi = Y SM
ℓi / cos β . (K.1.20)

The interactions of the neutral Higgs and Goldstone scalars φ0 = (h0,H0, A0, G0) with

Standard Model fermions are given in Fig. K.1.1. Note that the rules involving undotted spinor

indices are proportional to either couplings kdφ0 and kuφ0 , whereas the rules involving dotted

spinor indices are proportional to the corresponding complex conjugated couplings. For the

CP-even scalars, h0 and H0, the corresponding couplings are real. Hence, starting with the rule
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φ0

ūj

ui

− i√
2
Yuikuφ0δ

i
j δα

β

α

β

φ0

ūj

ui

− i√
2
Yuik

∗
uφ0δ

j
i δ

α̇
β̇

α̇

β̇

φ0

d̄j

di

− i√
2
Ydikdφ0δ

i
j δα

β

α

β

φ0

d̄j

di

− i√
2
Ydik

∗
dφ0δ

j
i δ

α̇
β̇

α̇

β̇

φ0

ℓ̄

ℓ

− i√
2
Yℓkdφ0 δα

β

α

β

φ0

ℓ̄

ℓ

− i√
2
Yℓk

∗
dφ0 δ

α̇
β̇

α̇

β̇

Figure K.1.1: Feynman rules for the interactions of neutral Higgs bosons φ0 = (h0,H0, A0, G0)
with fermion-antifermion pairs in the MSSM. The repeated index j is not summed.

for the coupling of the CP-even neutral scalars to fermions with undotted indices, one obtains

the corresponding rule for the coupling to fermions with dotted indices (with the direction of

the arrows reversed) by taking δα
β → δα̇β̇ . In contrast, for the CP-odd scalars, A0 and G0, the

corresponding couplings kdφ0 and kuφ0 are purely imaginary. Therefore, starting with the rule

for the coupling of the CP-odd neutral scalars to fermions with undotted indices, one obtains

the corresponding rule for the coupling to fermions with dotted indices (with the direction of

the arrows reversed) by taking δα
β → −δα̇β̇ . The latter minus sign is a signal that A0 and G0

are CP-odd scalars. In particular, due to the fact that the Feynman rules for A0 and G0 arise

from a term in Lint proportional to i Im H0, the latter i flips sign when the rule is conjugated

resulting in the extra minus sign noted above. As an additional consequence, since the Feynman

rules are obtained from iLint, the overall A0 and G0 rules are real.

The couplings of the charged Higgs and Goldstone bosons to quark-antiquark pairs are not

flavor-diagonal and involve the CKM matrix K. Starting with eq. (K.1.14), and changing to

the mass eigenstate basis as before, we make use of eqs. (J.1.22) and (J.1.23) to obtain

Lint = Yui[K]i
jdj ū

iH+ cos β± + Ydi[K
†]i
juj d̄

iH− sin β± + Yℓiνiℓ̄
iH− sinβ±

+Yui[K]i
jdj ū

iG+ sin β± − Ydi[K†]i
juj d̄

iG− cos β± − Yℓiνiℓ̄iG− cos β± + h.c. (K.1.21)

The resulting charged scalar Feynman rules of the MSSM are given in Fig. K.1.2. Note that when

eq. (K.1.20) is taken into account, the fermion couplings to the neutral and charged Goldstone

bosons are equivalent to those of the Standard Model [cf. eq. (J.1.24)] if we choose β0 = β± = β.
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φ+
di

ūj

iYuj[K]j
ikuφ± δα

β

α

β

φ−
di

ūj

iYuj [K
†]i
jkuφ± δ

α̇
β̇

α̇

β̇

φ−

d̄j

ui

iYdj [K
†]j

ikdφ± δα
β

α

β

φ+

d̄j

ui

iYdj [K]i
jkdφ± δ

α̇
β̇

α̇

β̇

φ−

ℓ̄

νℓ

iYℓkdφ± δα
β

α

β

φ+

ℓ̄

νℓ

iYℓkdφ± δ
α̇
β̇

α̇

β̇

Figure K.1.2: Feynman rules for the interactions of charged Higgs bosons φ± = (H±, G±)
with fermion-antifermion pairs in the MSSM.

K.2 Gauge interaction vertices for neutralinos and charginos

Following eqs. (C83) and (C88) of ref. [7], we define:

OLij = − 1√
2
Ni4V

∗
j2 +Ni2V

∗
j1 , (K.2.1)

ORij =
1√
2
N∗
i3Uj2 +N∗

i2Uj1 , (K.2.2)

O′L
ij = −Vi1V ∗

j1 − 1
2Vi2V

∗
j2 + δijs

2
W , (K.2.3)

O′R
ij = −U∗

i1Uj1 − 1
2U

∗
i2Uj2 + δijs

2
W , (K.2.4)

O′′L
ij = −O′′R

ji = 1
2(Ni4N

∗
j4 −Ni3N

∗
j3) , (K.2.5)

where sW ≡ sin θW . Here U and V are the unitary matrices that diagonalize the chargino mass

matrix via the singular value decomposition:

U∗Mψ±V −1 = diag(mC̃1
,mC̃2

) , (K.2.6)

with

Mψ± =



M2 gvu

gvd µ


 . (K.2.7)

Similarly, N is a unitary matrix that Takagi-diagonalizes the neutralino mass matrix,

N∗Mψ0N−1 = diag(mÑ1
,mÑ2

,mÑ3
,mÑ4

) , (K.2.8)
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with

Mψ0 =




M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0




. (K.2.9)

As noted above eq. (K.1.2), we work in a convention in which vu and vd are real and positive. The

gaugino mass parameters M1, M2 and the higgsino mass parameter µ are potentially complex.

We now list the gauge boson interactions with the neutralinos and charginos in the form of

Feynman rules. Here, we make use of the results presented in Figs. 4.3.2–4.3.4. The Feynman

rules for Z and γ interactions with charginos and neutralinos are given in Fig. K.2.1 and the

corresponding rules for W± interactions are given in Fig. K.2.2. For each of these rules, one has

a version with lowered spinor indices by replacing σα̇βµ → −σµβα̇. We label fermion lines with

the symbols of the two-component fermion fields as given in Table 5.1. The ZÑiÑj interaction

vertex also subsumes the O′′R
ij interaction found in four-component Majorana Feynman rules as

in ref. [7], due to the result of eq. (G.1.98) and the relation O′′R
ij = −O′′L

ji of eq. (K.2.5).

The chargino sector is CP-conserving if Im (M2µ
∗) = 0. In this case, the chargino fields

γ
χ+
j

χ+
i

−ie δijσα̇βµ

α̇

β

µ

γ
χ−
j

χ−
i

ie δijσ
α̇β
µ

α̇

β

µ

Z χ+
j

χ+
i

i
g

cW
O

′L
ij σ

α̇β
µ

α̇

β

µ

Z χ−
i

χ−
j

−i g
cW

O
′R
ij σ

α̇β
µ

α̇

β

µ

Z χ0
j

χ0
i

i
g

cW
O

′′L
ij σ

α̇β
µ

α̇

β

µ

Figure K.2.1: Feynman rules for the chargino and neutralino interactions with neutral gauge
bosons. The coupling matrices are defined in eqs. (K.2.3)–(K.2.5) and cW ≡ cos θW . For each

rule, a corresponding one with lowered spinor indices is obtained by σα̇βµ → −σµβα̇.
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W−
χ+
j

χ0
i

ig OLijσ
α̇β
µ

α̇

β

µ

W−
χ0
i

χ−
j

−ig ORijσ
α̇β
µ

α̇

β

µ

W+
χ0
i

χ+
j

ig OL∗ij σ
α̇β
µ

α̇

β

µ

W+
χ−
j

χ0
i

−ig OR∗ij σ
α̇β
µ

α̇

β

µ

Figure K.2.2: Feynman rules for the chargino and neutralino interactions with W± gauge
bosons. The charge indicated on the W boson is flowing into the vertex in each case. The
coupling matrices are defined in eqs. (K.2.1) and (K.2.2). For each rule, a corresponding one

with lowered spinor indices is obtained by σα̇βµ → −σµβα̇.

can be rephased such that M2 and µ are real, and the chargino mixing matrices U and V can

be chosen to be real orthogonal. In particular, the couplings O′L and O′R are manifestly real.

Likewise, the neutralino sector is CP-conserving if Im (M1µ
∗)= Im (M2µ

∗)= Im (M1M
∗
2 )=0.172

In this case, the neutralino fields can be rephased such that M1, M2 and µ are all real, and the

neutralino mixing matrix can be chosen [cf. eqs. (D.2.4) and (D.2.5)] such that [170]:

Nij = ε
1/2
i Zij , no sum over i , (K.2.10)

where Z is a real orthogonal matrix, and εi is the sign (either ±1) of the ith eigenvalue of the real

symmetric neutralino mass matrix, Mψ0 . That is, the ith row of N is purely real [imaginary] if

εi = +1 [−1]. In particular, the matrix element O′′L
ij is purely real [imaginary] if εiεj = +1 [−1].

More generally, the neutralino and chargino interactions with the electroweak gauge bosons are

CP-conserving if the corresponding Feynman rules for the interaction vertices are either purely

real or purely imaginary.

In the CP-violating case, the matrices U and V cannot be chosen to be real orthogonal,

and N cannot be written in the form of eq. (K.2.10).173 Nevertheless, the diagonal couplings

O′L
ii , O

′R
ii and O′′L

ii are manifestly real. This indicates that the diagonal Z0C̃+
i C̃

−
i and Z0ÑiÑi

couplings are CP-conserving at tree level, even in the presence of a CP-violating chargino and

neutralino sector. Similarly, the diagonal γC̃+
i C̃

−
i couplings are CP-conserving, whereas the

off-diagonal γC̃±
i C̃

∓
j couplings (i 6= j) vanish at tree level, as expected from gauge invariance.

172If all three of the potentially complex parameters M1, M2 and µ are non-zero, then only two of the three
conditions for a CP-conserving neutralino sector are independent, since the third condition follows automatically
from the first two conditions.
173SinceMψ0 is in general a complex symmetric matrix, its eigenvalues are not necessarily all real. In particular,

if the ith eigenvalue is not real, then there is no longer any meaning to the sign εi.
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−
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Figure K.3.1: Feynman rules for the interactions of neutral Higgs bosons φ0 = (h0,H0, A0, G0)
with neutralino pairs and chargino pairs, respectively, and the interaction of charged Higgs
bosons φ± = (H±, G±) with chargino-neutralino pairs. For each rule, there is a corresponding
one with all arrows reversed, undotted indices changed to dotted indices with the opposite height,
and the Y coupling (without the explicit −i) replaced by its complex conjugate.

K.3 Higgs interactions with charginos and neutralinos

The couplings of chargino and neutralino mass eigenstates to the Higgs mass eigenstates can be

written, in terms of the Higgs mixing parameters of eqs. (K.1.7) and (K.1.8) and the neutralino

and chargino mixing matrices of Appendix K.2, as [170]:

Y φ0χ0
iχ

0
j =

1

2
(k∗dφ0N

∗
i3 − k∗uφ0N∗

i4)(gN
∗
j2 − g′N∗

j1) + (i↔ j) , (K.3.1)

Y φ0χ−
i χ

+
j =

g√
2
(k∗uφ0U

∗
i1V

∗
j2 + k∗dφ0U

∗
i2V

∗
j1) , (K.3.2)

Y φ+χ0
iχ

−
j = kdφ±

[
g(N∗

i3U
∗
j1 −

1√
2
N∗
i2U

∗
j2)−

g′√
2
N∗
i1U

∗
j2

]
, (K.3.3)

Y φ−χ0
iχ

+
j = kuφ±

[
g(N∗

i4V
∗
j1 +

1√
2
N∗
i2V

∗
j2) +

g′√
2
N∗
i1V

∗
j2

]
, (K.3.4)

for φ0 = h0,H0, A0, G0 and φ± = H±, G±. We exhibit the Higgs boson and Goldstone boson

interactions with the neutralinos and charginos in Fig. K.3.1. For each of the Feynman rules

in Fig. K.3.1, one can reverse all arrows by taking δα
β → δα̇β̇ and complex conjugating the

corresponding coupling (but not the overall factor of −i).
Goldstone bosons may appear as internal lines in of Feynman graphs that are evaluated

in the ’t Hooft-Feynman gauge. The propagation of a Goldstone boson yields a result that

is identical to the propagation of the corresponding longitudinal gauge boson in the unitary

gauge. It is thus convenient to express the Goldstone boson couplings to the neutralinos and

charginos in terms of the corresponding gauge boson couplings. To accomplish this, we first

record a number of identities among the neutralino and chargino mixing matrices. First, we use
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eqs. (K.2.6) and (K.2.7) to derive:

M2U
∗
i1 + gvdU

∗
i2 = mC̃i

Vi1 , gvuU
∗
i1 + µU∗

i2 = mC̃i
Vi2 , (K.3.5)

M2V
∗
i1 + gvuV

∗
i2 = mC̃i

Ui1 , gvdV
∗
i1 + µV ∗

i2 = mC̃i
Ui2 . (K.3.6)

Next, we use eqs. (K.2.8) and (K.2.9) to derive:

mÑi
Ni4 =

4∑

j=1

N∗
ij(Mψ0)j4 =

vu√
2

(
g′N∗

i1 − gN∗
i2

)
− µN∗

i3 , (K.3.7)

m
Ñi
Ni3 =

4∑

j=1

N∗
ij(Mψ0)j3 = −

vd√
2

(
g′N∗

i1 − gN∗
i2

)
− µN∗

i4 , (K.3.8)

m
Ñi
Ni2 =

4∑

j=1

N∗
ij(Mψ0)j2 = N∗

i2M2 +
g√
2
(vdN

∗
i3 − vuN∗

i4) . (K.3.9)

By a judicious combination of the above identities, µ and M2 can be eliminated. One can

then rewrite the Goldstone boson couplings of eqs. (K.3.1)–(K.3.4) in terms of the gauge boson

couplings OL,R, O′L,R and O′′L,R defined in eqs. (K.2.1)–(K.2.5). It then follows that:

iY G0χ0
iχ

0
j =

√
2

v

(
m
Ñi
O′′L
ij −mÑj

O′′R
ij

)
, (K.3.10)

iY G0χ−
i χ

+
j =

√
2

v

(
mC̃i

O′L
ij −mC̃j

O′R
ij

)
, (K.3.11)

Y G+χ0
iχ

−
j =

√
2

v

(
m
C̃j
OL ∗
ij −mÑi

OR ∗
ij

)
, (K.3.12)

Y G−χ0
iχ

+
j = −

√
2

v

(
mÑi

OLij −mC̃j
ORij

)
. (K.3.13)

Note that by using O′′R
ij = −O′′L

ji , it follows from eq. (K.3.10) that iY G0χ0
iχ

0
j is symmetric under

the interchange of i and j, as expected.

In general, for a CP-violating chargino and neutralino sector, the couplings Y φ0χ0
iχ

0
i and

Y φ0χ+
i χ

−
i for φ0 = h0,H0, A0 are neither purely real nor purely imaginary. That is, the diagonal

neutralino and chargino couplings to the physical neutral Higgs bosons are generically CP-

violating. However for φ0 = G0, the diagonal neutralino and chargino couplings to the neutral

Goldstone boson (when multiplied by i) are manifestly real. In particular, eqs. (K.3.10) and

(K.3.11) yield:

iY G0χ0
iχ

0
i =

2
√
2mÑi

v
O′′L
ii =

√
2mÑi

v

[
|Ni4|2 − |Ni3|2

]
, (K.3.14)

iY G0χ−
i χ

+
i =

√
2mC̃i

v
(O′L

ii −O′R
ii ) =

mC̃i√
2 v

[
|Vi2|2 − |Ui2|2

]
, (K.3.15)

where the unitarity of U and V has been used to obtain the final expression in eq. (K.3.15). It

follows that the diagonal neutralino and chargino couplings to the neutral Goldstone boson are

CP-conserving. This result is not surprising, as the corresponding diagonal tree-level couplings

of the (longitudinal) Z0 boson are always CP-conserving as noted at the end of Appendix K.2.
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K.4 Chargino and neutralino interactions with fermions and sfermions

In the MSSM, the scalar partners of the two-component fields q and q̄† are the squarks, denoted

by q̃L and q̃R, respectively. In our notation, q̃ ∗L and q̃ ∗R denote both the complex conjugate fields

and the names of the corresponding anti-squarks. Thus u, ũL and ũR all have electric charges

+2/3, whereas ū, ũ ∗
L and ũ ∗

R all have electric charges −2/3. Likewise, the scalar partners of the

two-component fields ℓ and ℓ̄† are the charged sleptons, denoted by ℓ̃L and ℓ̃R, respectively, with

ℓ = e, µ, τ . The sneutrino, ν̃ is the superpartner of the neutrino. There is no ν̃R, since there is

no ν̄ in the theory.174

The Feynman rules for the chargino-quark-squark interactions are given in Fig. K.4.1, and

the rules for the neutralino-quark-squark interactions are given in Fig. K.4.2. Here we have taken

the quark and lepton two-component fields to be in a mass eigenstate basis, and the squark and

slepton field basis consists of the superpartners of these fields, as described above. Therefore,

in practical applications, one must include unitary rotation matrix elements relating the the

squarks and sleptons as given to the mass eigenstates, which can be different.

In principle, all sfermions with a given electric charge can mix with each other. However,

there is a popular, and perhaps phenomenologically and theoretically favored, approximation in

which only the sfermions of the third family have significant mixing. For f = t, b, τ , one can

then write the relationship between the gauge eigenstates f̃L, f̃R and the mass eigenstates f̃1,

f̃2 as [349] 
f̃R
f̃L


 = Xf̃


f̃1
f̃2


 , Xf̃ ≡


Rf̃1 Rf̃2

Lf̃1 Lf̃2


 , (K.4.1)

where X is a 2× 2 unitary matrix. Then one can choose Rf̃1 = L∗
f̃2

= cf̃ , and Lf̃1 = −R
∗
f̃2

= sf̃

with

|cf̃ |2 + |sf̃ |2 = 1. (K.4.2)

If there is no CP violation, then cf̃ and sf̃ can be taken real, and they are the cosine and sine

of a sfermion mixing angle.175 For the other charged sfermions (f̃ = ũ, d̃, c̃, s̃, ẽ, µ̃), one can use

the same notation, and approximate Lf̃2 = Rf̃1 = 1 and Lf̃1 = Rf̃2 = 0. The resulting Feynman

rules for squarks and sleptons that mix within each generation are shown in Figs. K.4.3 and

K.4.4.

For each Feynman rule in Figs. K.4.1–K.4.4, one can reverse all arrows by taking δα
β → δα̇β̇

and complex conjugating the corresponding rule (but leaving the explicit factor of i intact).

174It is possible to construct a seesaw-extended MSSM that would be the minimal supersymmetric extension of
the seesaw-extended Standard Model described in Appendix J.2. In the seesaw-extended MSSM, both ν̄ and its
supersymmetric partner ν̃R exist. For further details on the sneutrino sector of the seesaw-extended MSSM, see
ref. [298].
175Our convention for cf̃ , sf̃ has the property that for zero mixing angle, f̃1 = f̃R and f̃2 = f̃L. The conventions

most commonly found in the literature unfortunately do not have this nice property.
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Figure K.4.1: Feynman rules for the interactions of charginos with fermion/sfermion pairs
in the MSSM. The fermions are taken to be in a mass eigenstate basis, and the sfermions are
in a basis whose elements are the supersymmetric partners of them. For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the
opposite height, and the coupling (without the explicit i) replaced by its complex conjugate.
Note that chargino interaction vertices involving ūd̃R and d̄ũR do not occur in the MSSM. An
alternative version of these rules, for the case that mixing is allowed only among third-family
sfermions, is given in Fig. K.4.3.
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Figure K.4.2: Feynman rules for the interactions of neutralinos with fermion/sfermion pairs
in the MSSM. The fermions are taken to be in a mass eigenstate basis, and the sfermions are
in a basis whose elements are the supersymmetric partners of them. For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the
opposite height, and the coupling (without the explicit i) replaced by its complex conjugate. An
alternative version of these rules, for the case that mixing is allowed only among third-family
sfermions, is given in Fig. K.4.4.
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Figure K.4.3: Feynman rules for the interactions of charginos with third-family
fermion/sfermion pairs in the MSSM. The fermions are taken to be in a mass eigenstate ba-
sis. CKM mixing is neglected, and the sfermions are assumed to only mix within the third
family. The corresponding rules for the first and second families with the approximation of
no mixing and vanishing fermion masses can be obtained from these by setting Yf = 0 and

Lf̃2 = Rf̃1 = 1 and Lf̃1 = Rf̃2 = 0 (so that f̃1 = f̃R and f̃2 = f̃L). For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the
opposite height, and the coupling (without the explicit i) replaced by its complex conjugate.
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Figure K.4.4: Feynman rules for the interactions of neutralinos with third-family
fermion/sfermion pairs in the MSSM. The comments of the caption of Fig. K.4.3 also apply
here.
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K.5 SUSY-QCD Feynman rules

In supersymmetric (SUSY) QCD, the Lagrangian governing the gluon interactions with col-

ored fermions (gluinos and quarks) in two-component spinor notation, which derives from the

covariant derivatives in the kinetic terms, is given by

Lint = igsf
abd (g̃†a σµ g̃b)A

µ
d − gsT akj

∑

q

[
q†jσµqk − q̄†kσµq̄j

]
Aµa . (K.5.1)

Here gs is the strong coupling constant, a, b, d = 1, 2, . . . , 8 are SU(3)c adjoint representation

indices, and fabd are the SU(3) structure constants. Raised (lowered) indices j, k = 1, 2, 3 are

color indices in the fundamental (anti-fundamental) representation. We have denoted the two-

component gluino field by g̃a as in Table 5.1 and the gluon field by Aµa . The sum
∑

q is over the

six flavors q = u, d, s, c, b, t (in either the mass eigenstate or electroweak gauge-eigenstate basis).

The corresponding Feynman rules are shown in Fig. K.5.1. The gluino-squark-quark Lagrangian

is given by:

Lint = −
√
2gsT

ak
j

∑

q

[
g̃aqk q̃

∗j
L + g̃†aq

†j q̃Lk − g̃aq̄j q̃Rk − g̃†aq̄†k q̃
∗j
R

]
, (K.5.2)

where the squark fields are taken to be in the same basis as the quarks. The Feynman rules

resulting from these Lagrangian terms are shown in Fig. K.5.2.

For practical applications, one typically takes the quark fields as the familiar mass eigen-

states, and then performs a unitary rotation on the squarks in the corresponding basis to ob-

tain their mass eigenstate basis. In the approximation described at the end of Appendix K.4

[cf eqs. (K.4.1) and (K.4.2) and the accompanying text], one obtains the Feynman rules of

Fig. K.5.3, as an alternative to those of Fig. K.5.2.

µ, a

qk

qj

−igsT akj σα̇βµ

α̇

β

µ, a

q̄j

q̄k

igsT
ak
j σα̇βµ

α̇

β

µ, d

g̃b

g̃a

−gsfabd σα̇βµ

α̇

β

Figure K.5.1: Fermionic Feynman rules for SUSY-QCD that involve the gluon, with q =
u, d, c, s, t, b. Lowered (raised) indices j, k correspond to the fundamental (anti-fundamental)
representation of SU(3)c. For each rule, a corresponding one with lowered spinor indices is

obtained by σα̇βµ → −σµβα̇.
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Figure K.5.2: Fermionic Feynman rules for SUSY-QCD that involve the squarks, in a basis
corresponding to the quark mass eigenstates q = u, d, c, s, t, b. Lowered (raised) indices j, k cor-
respond to the fundamental (anti-fundamental) representation of SU(3)c, and the index a labels
the adjoint representation carried by the gluino. The spinor index heights can be exchanged in
each case, by replacing δα

β → δβ
α or δα̇β̇ → δβ̇ α̇. For an alternative set of rules, incorporating

q̃L–q̃R mixing, see Fig. K.5.3.
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Figure K.5.3: Fermionic Feynman rules for SUSY-QCD that involve the squarks in the mass
eigenstate basis labeled by x = 1, 2 and q = u, d, c, s, t, b, in the approximation where mixing
is allowed only within a given flavor (typically, for the third family only), as in eq. (K.4.1).
Lowered (raised) indices j, k correspond to the fundamental (anti-fundamental) representation
of SU(3)c, and the index a labels the adjoint representation carried by the gluino. The spinor

index heights can be exchanged in each case, by replacing δα
β → δβ

α or δα̇β̇ → δβ̇ α̇.
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Appendix L: Trilinear R-parity-violating Yukawa interactions

In the MSSM, a multiplicative R-parity invariance is imposed, where R = (−1)3(B−L)+2S for a

particle of baryon number B, lepton number L and spin S [350]. Equivalently, R-parity can be

defined to be an additive quantum number modulo 2, where R = +1 corresponds to an even

R-parity and R = −1 corresponds to an odd R-parity. In particular, all the ordinary Standard

Model particles are R parity even, whereas the corresponding supersymmetric partners are

R parity odd. In the R-parity-violating extension of the MSSM (denoted below as RPV-MSSM),

new interactions are allowed that violate R-parity. Such interactions necessarily violate the B−L
global symmetry. R-parity-violating interactions can significantly alter the phenomenology at

colliders (see for example [205,208]), especially as the lightest supersymmetric particle (LSP) is

no longer stable [209,351]. Moreover, the LSP need not be restricted to the lightest neutralino

(or perhaps the sneutrino) as in the MSSM, but can be any supersymmetric particle [204].

In this appendix, we focus on new trilinear supersymmetric Yukawa interactions that can

appear in an RPV-MSSM [351–354]:

LLLē = −1
2λijk

(
ℓ̃∗Rkνiℓj + ν̃iℓj ℓ̄k + ℓ̃Lj ℓ̄kνi − ℓ̃∗Rkℓiνj − ν̃j ℓ̄kℓi − ℓ̃Liνj ℓ̄k

)
+ h.c. , (L.1)

LLQd̄ = −λ′ijk
(
d̃∗Rkνidj + ν̃idj d̄k + d̃Lj d̄kνi − d̃∗Rkℓiuj − ũLj d̄kℓi − ℓ̃Liuj d̄k

)
+ h.c. , (L.2)

Lūd̄d̄ = −1
2λ

′′
ijkǫpqr

[
ũp∗Rid̄

q
j d̄
r
k + d̃q∗Rj ū

p
i d̄
r
k + d̃r∗Rkū

p
i d̄
q
j

]
+ h.c. , (L.3)

where repeated indices are summed over.176 In eqs. (L.1)–(L.3), λijk, λ
′
ijk, λ

′′
ijk are dimensionless

coupling constants, i, j, k are generation indices, and p, q, r = 1, 2, 3 are color SU(3) indices,

respectively. The couplings proportional to λ and λ′ violate L and conserve B, whereas the

couplings proportional to λ′′ violate B and conserve L. Various phenomenological constraints

on these couplings are summarized in refs. [354].

In addition to λijk, λ
′
ijk, λ

′′
ijk, the Lagrangian of the RPV-MSSM contains one additional su-

persymmetric L-violating mass parameter, κi, which leads to slepton–Higgs mixing and lepton–

higgsino mixing. Finally, supersymmetry-breaking R-parity-violating parameters would also

contribute to slepton–Higgs mixing and yields new trilinear scalar interactions. These effects

modify the Feynman rules of Appendix K through additional mixing matrices, which we do not

include here (for further details, see e.g. ref. [199]).

Recently, the two-component fermion Feynman rules for the neutral fermions have been

given in refs. [280, 355]. Using eq. (4.3.2) and Fig. 4.3.1 we can now directly determine the

corresponding Feynman rules. These are given in Figs. L.1, L.2, and L.3. The same Lagrangian

for the Yukawa interactions is given in terms of four-component fermions in refs. [206,207]. Two

sample computations that make use of these rules are presented in Sections 6.20 and 6.21.

176The extra factors of 1
2
in eqs. (L.1) and (L.3) have been chosen for convenience, due to the antisymmetry

properties of the corresponding couplings: λijk = −λjik, λ′′
ijk = −λ′′

ikj .
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ℓ̃Rk νi

ℓj

−iλijk
ν̃i

ℓ̄k

ℓj

−iλijk

ℓ̃Lj
ℓ̄k

νi

−iλijk

Figure L.1: Feynman rules for the Yukawa couplings of two-component fermions due to the
supersymmetric, R-parity-violating Yukawa Lagrangian LLLē [cf. eq. (L.1)]. For each diagram,
there is another with all arrows reversed and λijk → λ∗ijk.

d̃Rk νi

dj

−iλ′ijk
ν̃i

d̄k

dj

−iλ′ijk

d̃Lj
d̄k

νi

−iλ′ijk
d̃Rk

ℓi

uj

iλ′ijk

ũLj
d̄k

ℓi

iλ′ijk
ℓ̃Li

d̄k

uj

iλ′ijk

Figure L.2: Feynman rules for the Yukawa couplings of two-component fermions for the super-
symmetric, R-parity-violating Yukawa Lagrangian LLQd̄ [cf. eq. (L.2)]. For each diagram, there
is another with all arrows reversed and λ′ijk → λ′∗ijk.

ũpRi
d̄qj

d̄rk

−iǫpqrλ′′ijk
d̃rRk

ūpi

d̄qj

−iǫpqrλ′′ijk

Figure L.3: Feynman rules for the Yukawa couplings of two-component fermions due to the
supersymmetric, R-parity-violating Yukawa Lagrangian Lūd̄d̄ [cf. eq. (L.3)]. For each diagram,
there is another with all arrows reversed and λ′′ijk → λ′′∗ijk.
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